On the arithmetic nature of some identities of the elliptic functions theory
Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 1, pp. 15-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article offers a new arithmetic method of proof of the classical triple, quintuple and octuple product identities of the theta functions theory.
@article{DVMG_2013_13_1_a1,
     author = {V. A. Bykovskii and M. D. Monina},
     title = {On the arithmetic nature of some identities of the elliptic functions theory},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {15--34},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a1/}
}
TY  - JOUR
AU  - V. A. Bykovskii
AU  - M. D. Monina
TI  - On the arithmetic nature of some identities of the elliptic functions theory
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2013
SP  - 15
EP  - 34
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a1/
LA  - ru
ID  - DVMG_2013_13_1_a1
ER  - 
%0 Journal Article
%A V. A. Bykovskii
%A M. D. Monina
%T On the arithmetic nature of some identities of the elliptic functions theory
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2013
%P 15-34
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a1/
%G ru
%F DVMG_2013_13_1_a1
V. A. Bykovskii; M. D. Monina. On the arithmetic nature of some identities of the elliptic functions theory. Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 1, pp. 15-34. http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a1/

[1] C. G. J. Jacobi, Gesammelte Werke, v. 1, Berlin, 1881

[2] L. E. Dickson, History of the Theory of Numbers, v. 2, Chelsea Pub. Co., New York, 1952

[3] J. V. Uspensky, M. A. Heaslet, Elementary Number Theory, McGraw-Hill Book Company, Inc., New York and London, 1939

[4] B. A. Venkov, Elementarnaya teoriya chisel, ONTI NKTP SSSR, M. ; Leningrad, 1937

[5] Kenneth S. Williams, Number theory in the spirit of Liouville, London Mathematical Society Student Texts, 76, Cambridge University Press, 2011 | MR

[6] C. F. Gauss, Werke, v. II, Gottingen, 1863 | Zbl

[7] R. Fricke, Die Elliptischen Funktionen und ihre Anwendungen, v. 1, Springer, Berlin, 2011

[8] J. Ouspensky, “Sur les relations entre les nombres des classes des formes quadratiques binaires et positives. Premier Memoire, I”, Izvestiya Akademii Nauk. VI seriya, 19:12-15 (1925), 599–620

[9] N. V. Budarina, V. A. Bykovskii, “Arifmeticheskaya priroda tozhdesv dlya troinogo i pyatikratnogo proizvedenii”, Dalnevostochnyi matematicheskii zhurnal, 11:2 (2011), 140–148 | MR

[10] G. N. Watson, “Theorems stated by Ramanujan (VII): theorems on a continued fraction”, J. London Math. Soc., 4 (1929), 39–48 | DOI | Zbl

[11] A. O. L. Atkin, P. Swinnerton-Dyer, “Some properties of partitions”, Proc. London Math. Soc. (3), 4 (1954), 84–106 | DOI | MR | Zbl

[12] B. Gordon, “Some identities in combinatorial analysis”, Quart. J. Math. Oxford Ser. (2), 12 (1961), 285–290 | DOI | MR | Zbl

[13] A. A. Klyachko, “Modulyarnye formy i predstavleniya simmetricheskikh grupp”, Zap. nauchn. sem. LOMI, 116, 1982, 74–85 | MR | Zbl

[14] H. M. Weber, Lehrbuch der Algebra, v. 3, Braunschweig, 1908