Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2012_12_2_a1, author = {O. V. Alexandrova and O. S. Gromasheva and G. Yu. Kosolapkin}, title = {The {Immersion} {Method} for the {Solution} of the {Sturm} --- {Liouville} {Problem} in the {Matrix} {Statement}}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {136--145}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a1/} }
TY - JOUR AU - O. V. Alexandrova AU - O. S. Gromasheva AU - G. Yu. Kosolapkin TI - The Immersion Method for the Solution of the Sturm --- Liouville Problem in the Matrix Statement JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2012 SP - 136 EP - 145 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a1/ LA - ru ID - DVMG_2012_12_2_a1 ER -
%0 Journal Article %A O. V. Alexandrova %A O. S. Gromasheva %A G. Yu. Kosolapkin %T The Immersion Method for the Solution of the Sturm --- Liouville Problem in the Matrix Statement %J Dalʹnevostočnyj matematičeskij žurnal %D 2012 %P 136-145 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a1/ %G ru %F DVMG_2012_12_2_a1
O. V. Alexandrova; O. S. Gromasheva; G. Yu. Kosolapkin. The Immersion Method for the Solution of the Sturm --- Liouville Problem in the Matrix Statement. Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 136-145. http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a1/
[1] S. Bramley , L. Dieci , R. D. Russell, “Numerical Solution of Eigenvalue Problems for Linear Boundary Value ODES”, Journal of Computational Physics, 94 (1991), 382–402 | DOI | MR | Zbl
[2] V. I. Klyatskin, Metod pogruzheniya v teorii rasprostranenii voln, Nauka, M., 1986, 284 pp. | MR
[3] V. I. Klyatskin, Stokhasticheskie uravneniya: teoriya i ee prilozheniya k akustike, gidrodinamike i radiofizike, v. 1, Osnovnye polozheniya, tochnye rezultaty i asimptoticheskie priblizheniya, FIZMATLIT, M., 2008, 320 pp.
[4] R. F. Pannatoni, “Coupled mode theory for irregular acoustic waveguides with loss”, Akust. zhurn., 51:1 (2011), 41–55
[5] V.N. Zyryanov, “Vtorichnye toroidalnye vikhri Teilora nad vozmuscheniyami dna vo vraschayuscheisya zhidkosti”, DAN, 427:2 (2009), 192–198 | MR
[6] V. A. Sadovnichii , Ya. T. Sultanaev , A. M. Akhtyamov, Obratnye zadachi Shturma — Liuvillya s neraspadayuschimisya kraevymi usloviyami, Izd-vo Moskovskogo universiteta, M., 2009, 183 pp.
[7] K. V. Koshel, “Chislennoe reshenie zadachi troposfernogo rasprostraneniya korotkikh radiovoln dlya konechnogo poverkhnostnogo impedansa”, Radiotekh. i Elektr., 35:3 (1990), 647–649
[8] Dzh. Kasti , R. Kalaba, Metod pogruzheniya v prikladnoi matematike, Mir, M., 1973
[9] V. I. Goland, K. V. Koshel, “Chislennoe reshenie v zadache zagorizontnogo rasprostraneniya ultra-korotkikh radiovoln dlya konechnogo poverkhnostnogo impedansa”, Radiotekh. i Elektr., 35:9 (1990), 1805–1809
[10] V. I. Goland, V. I. Klyatskin, “Asimptoticheskii metod analiza stokhasticheskoi zadachi Shturma — Liuvillya. Metod pogruzheniya v teorii rasprostranenii voln”, Akust. zhurn., 35:5 (1989), 942–944
[11] R. Bellman, G. M.P. Wing, “An Introduction to Invariant Imbedding”, Classics in Applied Mathematics., 1992, no. 8, SIAM, Philadelphia | MR | Zbl
[12] A. I. Egorov, Uravnenie Rikkati, FIZMATLIT, M., 2001, 328 pp.
[13] M. I. Zelikin, “K teorii matrichnogo uravneniya Rikkati”, Matem. sb., 182:7 (1991), 970–984
[14] M. Kh. Zakhar-Itkin, “Matrichnoe differentsialnoe uravnenie Rikkati i polugruppa drobno-lineinykh preobrazovanii”, UMN, 28:3(171) (1973), 83–120 | MR | Zbl
[15] I. O. Yaroschuk, “O chislennom modelirovanii odnomernykh stokhasticheskikh volnovykh zadach”, Zh. vychisl. matem. i matem. fiz., 24:11 (1984), 1748–-1751 | MR
[16] F. R. Gantmakher, Teoriya matrits, FIZMATLIT, M., 2004, 560 pp.