The Immersion Method for the Solution of the Sturm --- Liouville Problem in the Matrix Statement
Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 136-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we propose a method for solving boundary-value wave problems described by the matrix system of Helmholtz equations. It has been shown that the Sturm — Liouville problems with singular matrices in the boundary conditions are reduced to the forms with nondegenerate matrices by using algebraic ransformations. This allows to obtain matrix equations using the invariant imbedding method. The solution of the Sturm — Liouville problem is reduced to the solution of the Cauchy problem for the matrix Riccati equation. It has been shown that the solution of the matrix Riccati equation can be constructed for arbitrary boundary conditions chosen for reasons of convenience, and the solutions for given boundary conditions are expressed in terms of the reference solution of the matrix Riccati equation with algebraic transformations. An equation for the eigenvalues of the Sturm – Liouville problem has also been formulated. It is expressed through the solution of the matrix Riccati equation, and the evolution equation for the spectral parameter of Sturm — Liouville problem has been obtained.
@article{DVMG_2012_12_2_a1,
     author = {O. V. Alexandrova and O. S. Gromasheva and G. Yu. Kosolapkin},
     title = {The {Immersion} {Method} for the {Solution} of the {Sturm} --- {Liouville} {Problem} in the {Matrix} {Statement}},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {136--145},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a1/}
}
TY  - JOUR
AU  - O. V. Alexandrova
AU  - O. S. Gromasheva
AU  - G. Yu. Kosolapkin
TI  - The Immersion Method for the Solution of the Sturm --- Liouville Problem in the Matrix Statement
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2012
SP  - 136
EP  - 145
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a1/
LA  - ru
ID  - DVMG_2012_12_2_a1
ER  - 
%0 Journal Article
%A O. V. Alexandrova
%A O. S. Gromasheva
%A G. Yu. Kosolapkin
%T The Immersion Method for the Solution of the Sturm --- Liouville Problem in the Matrix Statement
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2012
%P 136-145
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a1/
%G ru
%F DVMG_2012_12_2_a1
O. V. Alexandrova; O. S. Gromasheva; G. Yu. Kosolapkin. The Immersion Method for the Solution of the Sturm --- Liouville Problem in the Matrix Statement. Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 136-145. http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a1/

[1] S. Bramley , L. Dieci , R. D. Russell, “Numerical Solution of Eigenvalue Problems for Linear Boundary Value ODES”, Journal of Computational Physics, 94 (1991), 382–402 | DOI | MR | Zbl

[2] V. I. Klyatskin, Metod pogruzheniya v teorii rasprostranenii voln, Nauka, M., 1986, 284 pp. | MR

[3] V. I. Klyatskin, Stokhasticheskie uravneniya: teoriya i ee prilozheniya k akustike, gidrodinamike i radiofizike, v. 1, Osnovnye polozheniya, tochnye rezultaty i asimptoticheskie priblizheniya, FIZMATLIT, M., 2008, 320 pp.

[4] R. F. Pannatoni, “Coupled mode theory for irregular acoustic waveguides with loss”, Akust. zhurn., 51:1 (2011), 41–55

[5] V.N. Zyryanov, “Vtorichnye toroidalnye vikhri Teilora nad vozmuscheniyami dna vo vraschayuscheisya zhidkosti”, DAN, 427:2 (2009), 192–198 | MR

[6] V. A. Sadovnichii , Ya. T. Sultanaev , A. M. Akhtyamov, Obratnye zadachi Shturma — Liuvillya s neraspadayuschimisya kraevymi usloviyami, Izd-vo Moskovskogo universiteta, M., 2009, 183 pp.

[7] K. V. Koshel, “Chislennoe reshenie zadachi troposfernogo rasprostraneniya korotkikh radiovoln dlya konechnogo poverkhnostnogo impedansa”, Radiotekh. i Elektr., 35:3 (1990), 647–649

[8] Dzh. Kasti , R. Kalaba, Metod pogruzheniya v prikladnoi matematike, Mir, M., 1973

[9] V. I. Goland, K. V. Koshel, “Chislennoe reshenie v zadache zagorizontnogo rasprostraneniya ultra-korotkikh radiovoln dlya konechnogo poverkhnostnogo impedansa”, Radiotekh. i Elektr., 35:9 (1990), 1805–1809

[10] V. I. Goland, V. I. Klyatskin, “Asimptoticheskii metod analiza stokhasticheskoi zadachi Shturma — Liuvillya. Metod pogruzheniya v teorii rasprostranenii voln”, Akust. zhurn., 35:5 (1989), 942–944

[11] R. Bellman, G. M.P. Wing, “An Introduction to Invariant Imbedding”, Classics in Applied Mathematics., 1992, no. 8, SIAM, Philadelphia | MR | Zbl

[12] A. I. Egorov, Uravnenie Rikkati, FIZMATLIT, M., 2001, 328 pp.

[13] M. I. Zelikin, “K teorii matrichnogo uravneniya Rikkati”, Matem. sb., 182:7 (1991), 970–984

[14] M. Kh. Zakhar-Itkin, “Matrichnoe differentsialnoe uravnenie Rikkati i polugruppa drobno-lineinykh preobrazovanii”, UMN, 28:3(171) (1973), 83–120 | MR | Zbl

[15] I. O. Yaroschuk, “O chislennom modelirovanii odnomernykh stokhasticheskikh volnovykh zadach”, Zh. vychisl. matem. i matem. fiz., 24:11 (1984), 1748–-1751 | MR

[16] F. R. Gantmakher, Teoriya matrits, FIZMATLIT, M., 2004, 560 pp.