Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2011_11_2_a3, author = {S. N. Korobeinikov and A. A. Oleinikov}, title = {Lagrangian formulation of {Hencky's} hyperelastic material}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {155--180}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a3/} }
TY - JOUR AU - S. N. Korobeinikov AU - A. A. Oleinikov TI - Lagrangian formulation of Hencky's hyperelastic material JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2011 SP - 155 EP - 180 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a3/ LA - ru ID - DVMG_2011_11_2_a3 ER -
S. N. Korobeinikov; A. A. Oleinikov. Lagrangian formulation of Hencky's hyperelastic material. Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 2, pp. 155-180. http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a3/
[1] L. Anand, “On Hencky's approximate strain-energy function for moderate deformations”, Trans. ASME, J. Appl. Mech., 46:1 (1979), 78–82 | DOI | MR | Zbl
[2] L. Anand, “Moderate deformations in extension-torsion of incompressible isotropic elastic materials”, J. Mech. Phys. Solids., 34 (1986), 293–304 | DOI
[3] B. D. Annin, S. N. Korobeinikov, “Obobschennye sopryazhennye tenzory napryazhenii i deformatsii”, Sib. zhurn. ind. mat., 7:3 (2004), 21–43 | MR | Zbl
[4] J. Arghavani, F. Auricchio, R. Naghdabadi, “A finite strain kinematic hardening constitutive model based on Hencky strain: General framework, solution algorithm and application to shape memory alloys”, Int. J. Plasticity, 27 (2011), 940–961 | DOI | Zbl
[5] A. F. M. Arif, T. Pervez, M. P. Mughal, “Performance of a fnite element procedure for hyperelastic-viscoplastic large deformation problems”, Finite Elements in Analysis and Design, 34 (2000), 89–112 | DOI | Zbl
[6] M. Asghari, S. Naghdabadi, S. Sohrabpour, “Some basis-free expressions for stresses conjugate to Hill's strains through solving the tensor equation $\mathbf{A}\mathbf{X}+\mathbf{X}\mathbf{A}=\mathbf{C}$”, Int. J. Solids Struct., 45 (2008), 3584–3595 | DOI | Zbl
[7] M. Asghari, “Basis free expressions for the stress rate of isotropic elastic materials in the cases of coalescent principal stretches”, Int. J. Solids Struct., 47 (2010), 611–613 | DOI | Zbl
[8] K.-J. Bathe, Finite Element Procedures, Prentice Hall, Upper Saddle River, N.J., 1996
[9] R. C. Batra, “Linear constitutive relations in isotropic finite elasticity”, J. Elast., 51 (1998), 243–245 | DOI | MR | Zbl
[10] R. C. Batra, “Comparison of results from four linear constitutive relations in isotropic finite elasticity”, Int. J. Non-Linear Mech., 36 (2001), 421–432 | DOI | Zbl
[11] A. Bertram, Elasticity and Plasticity of Large Deformations. An Introduction, 2nd ed., Springer, Berlin, 2008 | MR
[12] J. Bonet, R. D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[13] O. T. Bruhns, A. Meyers, H. Xiao, “Hencky's elasticity model with the logarithmic strain measure: a study on Poynting effect and stress response in torsion of tubes and rods”, Arch. Mech., 52:4–5 (2000), 489–509 | MR | Zbl
[14] O. T. Bruhns, A. Meyers, H. Xiao, “Finite Bending of a Rectangular Block of an Elastic Hencky Material”, J. Elast., 66 (2002), 237–256 | DOI | MR | Zbl
[15] K. F. Chernykh, Nelineinaya teoriya uprugosti v mashinostroitelnykh raschetakh, Mashinostroenie, L., 1986
[16] A. Chiskis, “Linear stress-strain relations in nonlinear elasticity”, Acta Mech., 146 (2001), 109–113 | DOI | Zbl
[17] J. C. Criscione, J. D. Humphrey, A. S. Douglas, W. C. Hunter, “An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity”, J. Mech. Phys. Solids., 48 (2000), 2445–2465 | DOI | Zbl
[18] J. C. Criscione, “Direct tensor expression for natural strain and fast, accurate approximation”, Computers and Structures, 80 (2002), 1895–1905 | DOI | MR
[19] A. Curnier, L. Rakotomanana, “Generalized strain and stress measures: critical survey and new results”, Eng. Trans., 39:3–4 (1991), 461–538 | MR
[20] A. Curnier, Computational Methods in Solid Mechanics, Kluwer Academic Publ., Dordrecht, 1994 | MR | Zbl
[21] A. Curnier, Ph. Zysset, “A family of metric strains and conjugate stresses, prolonging usual material laws from small to large transformations”, Int. J. Solids Structures, 43 (2006), 3057–3086 | DOI | Zbl
[22] H. Darijani, R. Naghdabadi, “Hyperelastic materials behavior modeling using consistent strain energy density functions”, Acta Mech., 213 (2010), 235–254 | DOI | Zbl
[23] H. Darijani, R. Naghdabadi, “Constitutive modeling of solids at finite deformation using a second-order stress-strain relation”, Int. J. Engng Sci., 48 (2010), 223–236 | DOI
[24] J. Diani, P. Gilormini, “Combining the logarithmic strain and the full-network model for a better understanding of the hyperelastic behavior of rubber-like materials”, J. Mech. Phys. Solids., 53 (2005), 2579–2596 | DOI | Zbl
[25] P. Dluzewski, “Anisotropic hyperelasticity based upon general strain measures”, J. Elast., 60 (2000), 119–129 | DOI | Zbl
[26] G. Dui, “Time rates of Hill's strain tensors”, J. Elast., 54 (1999), 129–140 | DOI | MR | Zbl
[27] G. Dui, Q. Ren, Z. Shen, “Conjugate stresses to Seth's strain class”, Mech. Res. Commun., 27:5 (2000), 539–542 | DOI | Zbl
[28] G. Dui, Y. Chen, “Basis-free representations for the stress rate of isotropic materials”, Int. J. Solids Struct., 41 (2004), 4845–4860 | DOI | MR | Zbl
[29] G. Dui, “Some basis-free formulae for the time rate and conjugate stress of logarithmic strain tensor”, J. Elast., 83 (2006), 113–151 | DOI | MR | Zbl
[30] G. Dui, Z. Wang, Q. Ren, “Explicit formulations of tangent stiffness tensors for isotropic materials”, Int. J. Numer. Meth. Engng., 69 (2007), 665–675 | DOI | MR | Zbl
[31] K. Farahani, R. Naghdabadi, “Conjugate stresses of the Seth-Hill strain tensors”, Int. J. Solids Struct., 37 (2000), 5247–5255 | DOI | MR | Zbl
[32] K. Farahani, R. Naghdabadi, “Basis free relations for the conjugate stresses of the strains based on the right stretch tensor”, Int. J. Solids Struct., 40 (2003), 5887–5900 | DOI | MR | Zbl
[33] K. Farahani, H. Bahai, “Hyper-elastic constitutive equations of conjugate stresses and strain tensors for the Seth-Hill strain measures”, Int. J. Engng Sci., 42 (2004), 29–41 | DOI | MR | Zbl
[34] J. E. Fitzgerald, “A tensorial Hencky measure of strain and strain rate for finite deformations”, J. Appl. Phys., 51:10 (1980), 5111–5115 | DOI
[35] Y. C. Fung, Foundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs, N.J., 1965
[36] G. Gabriel, K. J. Bathe, “Some computational issues in large strain elasto-plastic analysis”, Computers and Structures, 56:2/3 (1995), 249–267 | DOI | MR | Zbl
[37] M. G. D. Geers, “Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework”, Comput. Methods Appl. Mech. Eng., 193 (2004), 3377–3401 | DOI | Zbl
[38] K. Ghavam, R. Naghdabadi, “Hardening materials modeling in finite elastic-plastic deformations based on the stretch tensor decomposition”, Materials Design, 29 (2008), 161–172 | DOI
[39] A. I. Golovanov, “Konechno-elementnoe modelirovanie bolshikh deformatsii giperuprugikh tel v terminakh glavnykh udlinenii”, Vychislitelnaya mekhanika sploshnykh sred, 2:1 (2009), 19–37
[40] A. I. Golovanov, “Chislennoe modelirovanie bolshikh deformatsii uprugoplasticheskikh tel v terminakh logarifmov glavnykh udlinenii”, Vychislitelnaya mekhanika sploshnykh sred, 4:1 (2011), 25–35
[41] K. Hashiguchi, Elastoplasticity Theory, Springer, Berlin, 2009
[42] P. Haupt, Ch. Tsakmakis, “Stress tensors associated with deformation tensors via duality”, Arch. Mech., 48:2 (1996), 347–384 | MR | Zbl
[43] K. Heiduschke, “The logarithm strain space description”, Int. J. Solids Struct., 32 (1995), 1047–1062 | DOI | Zbl
[44] R. Hill, “On constitutive inequalities for simple materials — I”, J. Mech. Phys. Solids., 16:4 (1968), 229–242 | DOI | Zbl
[45] R. Hill, “Aspects of invariance in solid mechanics”, Advances in Applied Mechanics, 18, Academic Press, New York, 1–75 | DOI | MR
[46] G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Egineering, Wiley, Chichester et al., 2000 | MR | Zbl
[47] C. O. Horgan, J. G. Murphy, “A generalization of Hencky's strain-energy density to model the large deformations of slightly compressible solid rubbers”, Mechanics of Materials, 41 (2009), 943–950 | DOI
[48] M. Itskov, “On the theory of fourth-order tensors and their applications in computational mechanics”, Comput. Methods Appl. Mech. Eng., 189 (2000), 419–438 | DOI | MR | Zbl
[49] M. Itskov, Tensor Algebra and Tensor Analysis for Engineers (with Applications to Continuum Mechanics), Springer, Berlin, 2007 | Zbl
[50] C. S. Jog, “The explicit determination of the logarithm of a tensor and its derivatives”, J. Elast., 93 (2008), 141–148 | DOI | MR | Zbl
[51] P. A. Kakavas, “A new development of the strain energy function for hyperelastic materials using a logarithmic strain approach”, Journal of Applied Polymer Science, 77 (2000), 660–672 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[52] O. Kintzel, Y. Basar, “Fourth-order tensors - tensor differentiation with applications to continuum mechanics. P. I: Classical tensor analysis”, ZAMM, 86:4 (2006), 291–311 | DOI | MR | Zbl
[53] S. N. Korobeinikov, V. P. Agapov, M. I. Bondarenko, A. N. Soldatkin, “The general purpose nonlinear finite element structural analysis program PIONER”, Int. Conf. on Numerical Methods and Applications, Sofia, 1989, 228–233
[54] S. N. Korobeinikov, Nelineinoe deformirovanie tverdykh tel, Iz-vo SO RAN, Novosibirsk, 2000
[55] S. N. Korobeinikov, “Strogo sopryazhennye tenzory napryazhenii i deformatsii”, PMTF, 41:3 (2000), 513–518 | MR
[56] S. N. Korobeynikov, “Objective tensor rates and applications in formulation of hyperelastic relations”, J. Elast., 93 (2008), 105–140 | DOI | MR | Zbl
[57] S. N. Korobeynikov, “Families of continuous spin tensors and applications in continuum mechanics”, Acta Mech., 216:1–4 (2011), 301–332 | DOI | Zbl
[58] I-Sh. Liu, “On the transformation property of the deformation gradient under a change of frame”, J. Elast., 71 (2003), 73–80 | DOI | MR | Zbl
[59] C. P. Luehr, M. B. Rubin, “The significance of projection operators in the spectral representatin of symmetric second order tensors”, Comput. Methods Appl. Mech. Eng., 84 (1990), 243–246 | DOI | MR | Zbl
[60] A. I. Lure, Nelineinaya teoriya uprugosti, Nauka, M., 1980 | MR
[61] C.-S. Man, Z.-H. Guo, “A basis-free formula for time rate of Hill's strain tensor”, Int. J. Solids Struct., 30:20 (1993), 2819–2842 | DOI | MR | Zbl
[62] MARC Users Guide, v. A, Theory and Users Information, MSC. Software Corporation, Santa Ana (CA), 2010
[63] J. E. Marsden, T. J. R. Hughes, Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs, N.J., 1983 | Zbl
[64] A. Meyers, H. Xiao, O. T. Bruhns, “Choice of objective rate in single parameter hypoelastic deformation cycles”, Computers and Structures, 84 (2006), 1134–1140 | DOI
[65] C. Miehe, “Aspects of the formulation and finite element implementation of large strain isotropic elasticity”, Int. J. Numer. Meth. Engng., 37 (1994), 1981–2004 | DOI | MR | Zbl
[66] C. Miehe, “Comparison of two algorithms for the computation of fourth-order isotropic tensor functions”, Computers and Structures, 66:1 (1998), 37–43 | DOI | MR | Zbl
[67] C. Miehe, M. Lambrecht, “Algorithms for computation of stresses and elasticity moduli in terms of Seth–Hill’s family of generalized strain tensors”, Comm. Numer. Meth. Engng., 17 (2001), 337–353 | DOI | Zbl
[68] C. Miehe, “Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials”, Comput. Methods Appl. Mech. Engrg., 191 (2002), 5383–-5425 | DOI | MR | Zbl
[69] C. Miehe, S. Göktepe, J. M. Diez, “Finite viscoplasticity of amorphous glassy polymers in the logarithmic strain space”, Int. J. Solids Structures, 46 (2009), 181–-202 | DOI | Zbl
[70] C. Miehe, J. M. Diez, S. Göktepe, L.-M. Schänzel, “Coupled thermoviscoplasticity of glassy polymers in the logarithmic strain space based on the free volume theory”, Int. J. Solids Structures, 48 (2011), 1799–-1817 | DOI
[71] K. N. Morman, Jr., “The generalized strain measure with application to nonhomogeneous deformations in rubber-like solids”, Trans. ASME, J. Appl. Mech., 53 (1986), 726–728 | DOI
[72] F. D. Murnaghan, Finite Deformation of an Elastic Solid, Wiley, New York, 1951 | MR | Zbl
[73] J. J. Nader, “Linear response in finite elasticity”, J. Elast., 73 (2003), 165–172 | DOI | MR | Zbl
[74] R. Naghdabadi, M. Yeganeh, A. R. Saidi, “Application of corotational rates of the logarithmic strain in constitutive modeling of hardening materials at finite deformations”, Int. J. Plasticity, 21 (2005), 1546–1567 | DOI | Zbl
[75] D. W. Nicholson, “Tangent modulus matrix for finite element analysis of hyperelastic materials”, Acta Mech., 112 (1995), 187–201 | DOI | Zbl
[76] V. V. Novozhilov, “O printsipakh obrabotki rezultatov staticheskikh ispytanii izotropnykh materialov”, PMM, 15:6 (1951), 709–722 | Zbl
[77] V. V. Novozhilov, Teoriya uprugosti, Sudpromgiz, L., 1958
[78] R. W. Ogden, Non-linear Elastic Deformations, Ellis Horwood, Chichester, 1984 | Zbl
[79] F. Peyraut, Z.-Q. Feng, Q.-C. He, N. Labed, “Robust numerical analysis of homogeneous and non-homogeneous deformations”, Appl. Num. Math., 59 (2009), 1499–1514 | DOI | MR | Zbl
[80] G. Piero, “Some properties of the set of fourth-order tensors, with application to elasticity”, J. Elast., 9:3 (1979), 245–261 | DOI | MR | Zbl
[81] J. Plesek, A. Kruisova, “Formulation, validation and numerical procedures for Hencky's elasticity model”, Computers and Structures, 84 (2006), 1141–1150 | DOI
[82] A. A. Pozdeev, P. V. Trusov, Yu. I. Nyashin, Bolshie uprugoplasticheskie deformatsii, Nauka, M., 1986 | MR
[83] W. Prager, Einführung in die Kontinuumsmechanik, Birkhäuser Verlag, Basel, 1961 ; V. Prager, Vvedenie v mekhaniku sploshnykh sred, Izd-vo inostr. lit., M., 1963 | MR | Zbl
[84] C. Sansour, “On the dual variable of the logarithmic strain tensor, the dual variable of the Cauchy stress tensor, and related issues”, Int. J. Solids Struct., 38 (2001), 9221–9232 | DOI | MR | Zbl
[85] M. Scheidler, “Time rates of generalized strain tensors. Part I: Component formulas”, Mechanics of Materials, 11 (1991), 199–210 | DOI
[86] A. V. Shutov, R. Kreißig, “Application of a coordinate-free tensor formalism to the numerical implementation of a material model”, ZAMM, 88:11 (2008), 888–909 | DOI | MR | Zbl
[87] J. C. Simo, T. J. R. Hughes, Computational Inelasticity, Springer, Berlin, 1998 | MR
[88] C. Truesdell, W. Noll, The Non-linear Field Theories of Mechanics, v. III/3, Handbuch der Physik, ed. S. Flügge, Springer, New York, 1965 | MR
[89] P. V. Trusov, O. I. Dudar, I. A. Keller, Tenzornaya algebra i analiz, Permskii TU, Perm, 1998
[90] K. Y. Volokh, “Comments and authors' reply on “Linear stress-strain relations in nonlinearelasticity” by A. Chiskis and R. Parnes (Acta Mech. 146, 109–113, 2001)”, Acta Mech., 171 (2004), 241–245 | DOI
[91] G. Weber, L. Anand, “Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids”, Comput. Methods Appl. Mech. Eng., 79 (1990), 173–202 | DOI | Zbl
[92] H. Xiao, “Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill's strain”, Int. J. Solids Struct., 32:22 (1995), 3327–3340 | DOI | MR | Zbl
[93] H. Xiao, O. T. Bruhns, A. Meyers, “Logarithmic strain, logarithmic spin and logarithmic rate”, Acta Mech., 124 (1997), 89–105 | DOI | MR | Zbl
[94] H. Xiao, O. T. Bruhns, A. Meyers, “Hypo-elasticity model based upon the logarithmic stress rate”, J. Elast., 47 (1997), 51–68 | DOI | MR | Zbl
[95] H. Xiao, O. T. Bruhns, A. Meyers, “Strain rates and material spins”, J. Elast., 52 (1998), 1–41 | DOI | MR | Zbl
[96] H. Xiao, O. T. Bruhns, A. Meyers, “Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures”, Arch. Mech., 50:6 (1998), 1015–1045 | MR | Zbl
[97] H. Xiao, O. T. Bruhns, A. Meyers, “Direct relationship between the Lagrangean logarithmic strain and the Lagrangean stretching and the Lagrangean Kirchhoff stress”, Mechanics Research Communications, 25:1 (1998), 59–67 | DOI | MR | Zbl
[98] H. Xiao, O. T. Bruhns, A. Meyers, “Existence and uniqueness of the integrable-exactly hypoelastic equation $\overset{\circ}{\boldsymbol{\tau}}{}^{\ast}=\lambda(\mathrm{tr}\,\mathbf{D})\mathbf{I}+2\mu\mathbf{D}$ and its significance to finite inelasticity”, Acta Mech., 138 (1999), 31–50 | DOI | Zbl
[99] H. Xiao, O. T. Bruhns, A. Meyers, “A natural generalization of hypoelasticity and Eulerian rate type formulation of hyperelasticity”, J. Elast., 56 (1999), 59–93 | DOI | MR | Zbl
[100] H. Xiao, O. T. Bruhns, A. Meyers, “The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate”, Proc. R. Soc. Lond. A., 456 (2000), 1865–1882 | DOI | MR | Zbl
[101] H. Xiao, O. T. Bruhns, A. Meyers, “Basis issues concerning finite strain measures and isotropic stress-deformation relations”, J. Elast., 67 (2002), 1–23 | DOI | MR | Zbl
[102] H. Xiao, L. S. Chen, “Hencky's elasticity model and linear stress-strain relations in isotropic finite hyperelasticity”, Acta Mech., 157 (2002), 51–60 | DOI | Zbl
[103] H. Xiao, L. S. Chen, “Hencky's logarithmic strain and dual stress-strain and strain-stress relations in isotropic finite hyperelasticity”, Int. J. Solids Struct., 40 (2003), 1455–1463 | DOI | Zbl
[104] H. Xiao, O. T. Bruhns, A. Meyers, “Explicit dual stress-strain and strain-stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky strain and Cauchy stress”, Acta Mech., 168 (2004), 21–33 | DOI | Zbl
[105] H. Xiao, O. T. Bruhns, A. Meyers, “Objective stress rates, path-dependence properties and non-integrability problems”, Acta Mech., 176 (2005), 135–151 | DOI | Zbl
[106] H. Xiao, O. T. Bruhns, A. Meyers, “Elastoplasticity beyond small deformations”, Acta Mech., 182 (2006), 31–111 | DOI | Zbl
[107] H. Xiao, L. H. He, “A unified exact analysis for the Poynting effects of cylindrical tubes made of Hill's class of Hookean compressible elastic materials at finite strain”, Int. J. Solids Struct., 44 (2007), 718–731 | DOI | Zbl
[108] H. Xiao, O. T. Bruhns, A. Meyers, “Objective stress rates, path-dependence properties and non-integrability problems”, Acta Mech., 188 (2007), 227–244 | DOI | Zbl
[109] H. Xiao, Z. F. Yue, L. H. He, “Hill’s class of compressible elastic materials and finite bending problems: Exact solutions in unified form”, Int. J. Solids Struct., 48 (2011), 1340–1348 | DOI | Zbl
[110] M. Yeganeh, R. Naghdabadi, “Axial effects investigation in fixed-end circular bars under torsion with a finite deformation model based on logarithmic strain”, Int. J. Mech. Sci., 48 (2006), 75–84 | DOI | Zbl
[111] X. Zhou, K. K. Tamma, “On the applicability and stress update formulations for corotational stress rate hypoelasticity constitutive models”, Finite Elements in Analysis and Design, 39 (2003), 783–816 | DOI | MR