The arithmetic nature of the triple and quintuple product identities
Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 2, pp. 140-148

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the new proof is suggested for decomposition of twisted with quadratic characters modulo 4 and 3 theta-functions to the infinite product. It is based on the Euler's method of logarithmic derivation and the elementary arithmetic concepts.
@article{DVMG_2011_11_2_a1,
     author = {N. V. Budarina and V. A. Bykovskii},
     title = {The arithmetic nature of the triple and quintuple product identities},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {140--148},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a1/}
}
TY  - JOUR
AU  - N. V. Budarina
AU  - V. A. Bykovskii
TI  - The arithmetic nature of the triple and quintuple product identities
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2011
SP  - 140
EP  - 148
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a1/
LA  - ru
ID  - DVMG_2011_11_2_a1
ER  - 
%0 Journal Article
%A N. V. Budarina
%A V. A. Bykovskii
%T The arithmetic nature of the triple and quintuple product identities
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2011
%P 140-148
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a1/
%G ru
%F DVMG_2011_11_2_a1
N. V. Budarina; V. A. Bykovskii. The arithmetic nature of the triple and quintuple product identities. Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 2, pp. 140-148. http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a1/