Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2011_11_2_a0, author = {A. A. Aizenberg}, title = {Connection between {Buchstaber} invariants and generalized chromatic numbers}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {113--139}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a0/} }
TY - JOUR AU - A. A. Aizenberg TI - Connection between Buchstaber invariants and generalized chromatic numbers JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2011 SP - 113 EP - 139 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a0/ LA - ru ID - DVMG_2011_11_2_a0 ER -
A. A. Aizenberg. Connection between Buchstaber invariants and generalized chromatic numbers. Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 2, pp. 113-139. http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a0/
[1] G. D. Birkhoff, “A determinant formula for the number of ways of coloring a map”, Ann. of Math. (2), 14 (1912), 42–46 | DOI | MR | Zbl
[2] V. .M. Bukhshtaber, T. E. Panov, “Deistviya torov, kombinatornaya topologiya i gomologicheskaya algebra”, UMN, 55:5 (2000), 3–106 | DOI | MR | Zbl
[3] V. M. Bukhshtaber, T. E. Panov, Toricheskie deistviya v topologii i kombinatorike, MTsNMO, Moskva, 2004
[4] M. Davis, T. Januszkievicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl
[5] F. M. Dong, K. M. Koh, K. L. Teo, Chromatic polynomials and chromaticity of graphs, World Scientific Publishing Company, 2005 | MR
[6] N. Yu. Erokhovets, “Invariant Bukhshtabera prostykh mnogogrannikov”, UMN, 63:5, no. 383 (2008), 187–188 | DOI | MR | Zbl
[7] Yukiko Fukukawa and Mikiya Masuda, Buchstaber invariants of skeleta of a simplex, arXiv: 0908.3448 | MR
[8] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.12, , 2008 http://www.gap-system.org
[9] I. V. Izmestev, “Trekhmernye mnogoobraziya, opredelyaemye raskraskoi granei prostogo mnogogrannika”, Matematicheskie zametki, 69:3 (2001), 375–382 | DOI | MR | Zbl
[10] Wilberd van der Kallen, “Homology stability for linear groups”, Inventiones Mathematicae, 60:3 (1980) | MR | Zbl
[11] J.P.S. Kung, A source book in matroid theory, Birkhauser, 1986 | MR | Zbl
[12] Hisashi Nakayama and Yasuzo Nishimura, “The orientability of small covers and coloring simple polytopes”, Osaka J. Math., 42:1 (2005), 243–256 | MR | Zbl
[13] G. Reisner, “Cohen-Macaulay quotients of polynomial rings”, Advances in Math., 21:1 (1976), 30–49 | DOI | MR | Zbl
[14] G.-C. Rota, “On the foundations of combinatorial theory I. Theory of Mobius Functions”, Probability Theory and Related Fields, 2:4 (1964) | MR | Zbl
[15] F. Effenberger and J. Spreer, {\tt simpcomp} – a {\tt GAP} toolkit for simplicial complexes, Version 1.3.3, , 2010 http://www.igt.uni-stuttgart.de/LstDiffgeo/simpcomp
[16] H. Whitney, “A logical expansion in mathematics”, Bull. Amer. Math. Soc., 38 (1932), 572–579 | DOI | MR