Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2011_11_1_a4, author = {A. A. Illarionov and D. Slinkin}, title = {The average number of vertexes of {Klein} polyhedrons for integer lattices}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {48--55}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2011_11_1_a4/} }
TY - JOUR AU - A. A. Illarionov AU - D. Slinkin TI - The average number of vertexes of Klein polyhedrons for integer lattices JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2011 SP - 48 EP - 55 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2011_11_1_a4/ LA - ru ID - DVMG_2011_11_1_a4 ER -
A. A. Illarionov; D. Slinkin. The average number of vertexes of Klein polyhedrons for integer lattices. Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 1, pp. 48-55. http://geodesic.mathdoc.fr/item/DVMG_2011_11_1_a4/
[1] G. F. Voronoi, Sobranie sochinenii v 3-kh tomakh, AN USSR, Kiev, 1952
[2] H. Minkowski, “Generalisation de la theorie des fraction continues”, Ann. Sei. Ecole Norm. Sup., 1896, no. 2, 41–60 | MR | Zbl
[3] F. Klein, “Ueber eine geometrische Auffassung der gewöhlichen Kettenbruchentwichlung”, Nachr. Ges. Wiss. Göttingem., 1895, no. 3, 357–359 | Zbl
[4] V. A. Bykovskii, “Otnositelnye minimumy reshetok i vershiny mnogogrannikov Kleina”, Funkts. analiz i ego pril., 40:1 (2006), 69–71 | DOI | MR | Zbl
[5] V. I. Arnold, Tsepnye drobi, MTsNMO, M., 2001
[6] V. I. Arnold, “Higher dimensional continued fractions”, Nachr. Ges. Wiss. Gottingem., 1998, no. 3, 10–17 | MR | Zbl
[7] V. A. Bykovskii, “O pogreshnosti teoretiko-chislovykh kvadraturnykh formul”, Chebyshevskii sbornik, 3:2 (2002), 27–33 | MR | Zbl
[8] H. Heilbronn, “On the average length of a class of finite continued fractions, Number Theory and Analysis”, Number Theory and Analysis (Papers in Honor of Edmund Landau), Plenum, New York, 1969, 87–96 | DOI | MR
[9] A. A. Illarionov, “Srednee kolichestvo otnositelnykh minimumov trekhmernykh tselochislennykh reshetok”, Algebra i analiz, 23 (2011) (to appear) | MR
[10] A. A. Illarionov, “Statisticheskie svoistva mnogomernykh analogov nepreryvnykh drobei”, Materialy XXII kraevogo konkursa molodykh uchenykh, Izd-vo Tikhookean. gos. un-ta, 2010, 5–16
[11] M. O. Avdeeva, “O nizhnikh otsenkakh kolichestva lokalnykh minimumov tselochislennykh reshëtok”, Fundament. i prikl. matem., 11:6 (2005), 9–14 | MR
[12] A. A. Illarionov, “Otsenki kolichestva otnositelnykh minimumov nepolnykh tselochislennykh reshetok proizvolnogo ranga”, DAN, 418:2 (2008), 155–168 | MR | Zbl
[13] Dzh. Kassels, Geometriya chisel, Mir, M., 1965, 211 pp. | MR
[14] L. Dauner,B. Gryunbaum,V. Kli, Teorema Khelli, Mir, M., 1968, 160 pp.