The average number of vertexes of Klein polyhedrons for integer lattices
Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 1, pp. 48-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Low estimate for the average number for vertices of Klein polyhedron of integer lattices with given determinant is derived. The low estimate coincides with the high estimate up to a constant. The constant depends on dimension of lattices. High-low estimates for the number of relative minima of integer lattices with given determinant is derived from this fact.
@article{DVMG_2011_11_1_a4,
     author = {A. A. Illarionov and D. Slinkin},
     title = {The average number of vertexes of {Klein} polyhedrons for integer lattices},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {48--55},
     year = {2011},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2011_11_1_a4/}
}
TY  - JOUR
AU  - A. A. Illarionov
AU  - D. Slinkin
TI  - The average number of vertexes of Klein polyhedrons for integer lattices
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2011
SP  - 48
EP  - 55
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DVMG_2011_11_1_a4/
LA  - ru
ID  - DVMG_2011_11_1_a4
ER  - 
%0 Journal Article
%A A. A. Illarionov
%A D. Slinkin
%T The average number of vertexes of Klein polyhedrons for integer lattices
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2011
%P 48-55
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/DVMG_2011_11_1_a4/
%G ru
%F DVMG_2011_11_1_a4
A. A. Illarionov; D. Slinkin. The average number of vertexes of Klein polyhedrons for integer lattices. Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 1, pp. 48-55. http://geodesic.mathdoc.fr/item/DVMG_2011_11_1_a4/

[1] G. F. Voronoi, Sobranie sochinenii v 3-kh tomakh, AN USSR, Kiev, 1952

[2] H. Minkowski, “Generalisation de la theorie des fraction continues”, Ann. Sei. Ecole Norm. Sup., 1896, no. 2, 41–60 | MR | Zbl

[3] F. Klein, “Ueber eine geometrische Auffassung der gewöhlichen Kettenbruchentwichlung”, Nachr. Ges. Wiss. Göttingem., 1895, no. 3, 357–359 | Zbl

[4] V. A. Bykovskii, “Otnositelnye minimumy reshetok i vershiny mnogogrannikov Kleina”, Funkts. analiz i ego pril., 40:1 (2006), 69–71 | DOI | MR | Zbl

[5] V. I. Arnold, Tsepnye drobi, MTsNMO, M., 2001

[6] V. I. Arnold, “Higher dimensional continued fractions”, Nachr. Ges. Wiss. Gottingem., 1998, no. 3, 10–17 | MR | Zbl

[7] V. A. Bykovskii, “O pogreshnosti teoretiko-chislovykh kvadraturnykh formul”, Chebyshevskii sbornik, 3:2 (2002), 27–33 | MR | Zbl

[8] H. Heilbronn, “On the average length of a class of finite continued fractions, Number Theory and Analysis”, Number Theory and Analysis (Papers in Honor of Edmund Landau), Plenum, New York, 1969, 87–96 | DOI | MR

[9] A. A. Illarionov, “Srednee kolichestvo otnositelnykh minimumov trekhmernykh tselochislennykh reshetok”, Algebra i analiz, 23 (2011) (to appear) | MR

[10] A. A. Illarionov, “Statisticheskie svoistva mnogomernykh analogov nepreryvnykh drobei”, Materialy XXII kraevogo konkursa molodykh uchenykh, Izd-vo Tikhookean. gos. un-ta, 2010, 5–16

[11] M. O. Avdeeva, “O nizhnikh otsenkakh kolichestva lokalnykh minimumov tselochislennykh reshëtok”, Fundament. i prikl. matem., 11:6 (2005), 9–14 | MR

[12] A. A. Illarionov, “Otsenki kolichestva otnositelnykh minimumov nepolnykh tselochislennykh reshetok proizvolnogo ranga”, DAN, 418:2 (2008), 155–168 | MR | Zbl

[13] Dzh. Kassels, Geometriya chisel, Mir, M., 1965, 211 pp. | MR

[14] L. Dauner,B. Gryunbaum,V. Kli, Teorema Khelli, Mir, M., 1968, 160 pp.