On cylindrical minima of three-dimensional lattices
Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 1, pp. 37-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonzero point $\gamma=(\gamma_1,\gamma_2,\gamma_3)$ of three-dimensional lattice $\Gamma$ is called by cylindrical minimum if there exist no nonzero point $\eta=(\eta_1,\eta_2,\eta_3)$ such as $$ \eta_1^2+\eta_2^2\le\gamma_1^2+\gamma_2^2, \quad |\eta_3|\le|\gamma_3|, \quad |\gamma||\eta|. $$ It is proved that the average number of cylindrical minima of three-dimensional integer lattices with determinant from $[1;N]$ is equal $$ \mathcal C \cdot\ln N+O(1). $$
@article{DVMG_2011_11_1_a3,
     author = {A. A. Illarionov},
     title = {On cylindrical minima of three-dimensional lattices},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {37--47},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2011_11_1_a3/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - On cylindrical minima of three-dimensional lattices
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2011
SP  - 37
EP  - 47
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2011_11_1_a3/
LA  - ru
ID  - DVMG_2011_11_1_a3
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T On cylindrical minima of three-dimensional lattices
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2011
%P 37-47
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2011_11_1_a3/
%G ru
%F DVMG_2011_11_1_a3
A. A. Illarionov. On cylindrical minima of three-dimensional lattices. Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 1, pp. 37-47. http://geodesic.mathdoc.fr/item/DVMG_2011_11_1_a3/

[1] G. F. Voronoi, Sobranie sochinenii v 3-kh tomakh, v. 1, Izd-vo AN USSR, Kiev, 1952

[2] G. Lochs, “Statistik der Teilnenner der zu den echten Brüchen gehörigen regelmässigen Kettenbrüche”, Monatsh. Math., 65 (1961), 27–52 | DOI | MR | Zbl

[3] H. Heilbronn, “On the average length of a class of finite continued fractions”, Number Theory and Analysis, Papers in Honor of Edmund Landau, Plenum, New York, 1969, 87–96 | DOI | MR

[4] A. A. Illarionov, “Srednee kolichestvo otnositelnykh minimumov trekhmernykh tselochislennykh reshetok”, Algebra i analiz, 23 (2011) (to appear) | MR

[5] B. N. Delone, D. K. Faddeev, “Teoriya irratsionalnostei tretei stepeni”, Tr. Matem. in-ta im. V. A. Steklova, 11, Izd-vo AN SSSR, M.-L., 1940, 3–340 | MR

[6] P. G. L. Dirikhle, Lektsii po teorii chisel, ONTI, M.–L., 1936