Experimental research of Frobenius problem for three arguments
Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 1, pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes some numerical results concerning Frobenius problem. Density distribution functions are calculated for $\frac{f(a,b,c)}{\sqrt{abc}}$, $\frac{N(a,b,c)}{\sqrt{abc}}$ and $\frac{N(a,b,c)}{f(a,b,c)}$, where $f(a,b,c)$ is modified Frobenius number (largest integer $M$ such that equation $ax+by+cz=M$ does not have positive integer solution) and $N(a,b,c)$ is modified genus of numerical semigroup generated by $a,b,c$. Expectations of the same ratios are calculated numerically. The paper also contains new sharp lower bound for genus: $N(a,b,c)\geqslant\frac{5\sqrt 3}{9}\sqrt{abc}$.
@article{DVMG_2011_11_1_a0,
     author = {I. S. Vorobjov},
     title = {Experimental research of {Frobenius} problem for three arguments},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2011_11_1_a0/}
}
TY  - JOUR
AU  - I. S. Vorobjov
TI  - Experimental research of Frobenius problem for three arguments
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2011
SP  - 3
EP  - 9
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2011_11_1_a0/
LA  - ru
ID  - DVMG_2011_11_1_a0
ER  - 
%0 Journal Article
%A I. S. Vorobjov
%T Experimental research of Frobenius problem for three arguments
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2011
%P 3-9
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2011_11_1_a0/
%G ru
%F DVMG_2011_11_1_a0
I. S. Vorobjov. Experimental research of Frobenius problem for three arguments. Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/DVMG_2011_11_1_a0/

[1] V. Arnold, Arnold’s Problems, Springer, 2005 | MR

[2] S. M. Johnson, “A linear diophantine problem”, Canad. J. Math, 1960, no. 12, 390–398 | DOI | MR | Zbl

[3] O. Rödseth, “On a Linear Diophantine Problem of Frobenius”, J. Reine Angew. Math, 301 (1978), 171–178 | DOI | MR | Zbl

[4] E. S. Selmer and Ö. Beyer, “On the linear diophantine problem of Frobenius in three variables”, J. Reine Angew. Math, 301 (1978), 161–170 | MR | Zbl

[5] J. Marklof, “The asymptotic distribution of Frobenius numbers”, Inventiones mathematicae, 181:1, 179–207 | DOI | MR | Zbl

[6] A. V. Ustinov, “Reshenie zadachi Arnolda o slaboi asimptotike dlya chisel Frobeniusa s tremya argumentami”, Matem. sb., 200:4 (2009), 131–160 | DOI | MR | Zbl

[7] O. Rödseth, “Weighted multi-connected loop networks”, Discrete Mathematics, 148:1-3 (1996), 161–173 | DOI | MR | Zbl

[8] L. G. Fel, “Weak asymptotics in the 3-dim Frobenius problem”, Funct. Anal. Other Math., 2009, no. 2, 179–202 | DOI | MR | Zbl

[9] H. S. Wilf, “A circle-of-lights algorithm for the “money-changing problem”, Am. Math. Monthly, 85 (1978), 562–565 | DOI | MR | Zbl

[10] V. I. Arnold, Ekmperimentalnoe nablyudenie matematicheskikh faktov, MTsNMO, M., 2006 | MR

[11] M. Beck, D. Einstein, Sh. Zacks, “Some experimental results on the Frobenius problem”, Experiment. Math., 12:3 (2003), 263–269 | DOI | MR | Zbl

[12] D. Beihoffer, J. Hendry, A. Nijenhuis, S. Wagon, “Faster algorithms for Frobenius numbers”, Electron. J. Combin., 12:1 (2005), research paper 27 | MR | Zbl

[13] A. V. Ustinov, “O raspredelenii chisel Frobeniusa s tremya argumentami”, Izv. RAN ser. matem., 74:5 (2010), 145–170 | DOI | MR | Zbl

[14] J. L. Davison, “On the Linear Diophantine Problem of Frobenius”, Journal of Number Theory, 48:3 (1994), 353–363 | DOI | MR | Zbl

[15] J. Marklof, A. Strömbergsson, Diameters of random circulant graphs, arXiv: 1103.3152v1 | MR