Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2010_10_2_a0, author = {I. S. Vakhitov}, title = {Inverse problem of identification of the diffusion coefficient in diffision-reaction equation}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {93--105}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a0/} }
TY - JOUR AU - I. S. Vakhitov TI - Inverse problem of identification of the diffusion coefficient in diffision-reaction equation JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2010 SP - 93 EP - 105 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a0/ LA - ru ID - DVMG_2010_10_2_a0 ER -
I. S. Vakhitov. Inverse problem of identification of the diffusion coefficient in diffision-reaction equation. Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 2, pp. 93-105. http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a0/
[1] K. A. Lure, Optimalnoe upravlenie v zadachakh matematicheskoi fiziki, Nauka, M., 1975, 480 pp. | MR
[2] S. Ya. Serovaiskii, Optimizatsiya i differentsirovanie, v. 1, Minimizatsiya funktsionalov. Statsionarnye sistemy, Print-S, Almaty, 2006, 602 pp. | MR | Zbl
[3] K. Ito, K. Kunisch, “Estimation of the convection coefficient in elliptic equations”, Inverse Problems, 1997, no. 14, 995–1013 | DOI | MR | Zbl
[4] G. V. Alekseev, E. A. Kalinina, “Identifikatsiya mladshego koeffitsienta dlya statsionarnogo uravneniya konvektsii-diffuzii-reaktsii”, Sib. zhurn. industr. matem., 10:1 (2007), 3–16 | MR | Zbl
[5] Runsheng Yang Yunhua Ou, “Inverse coefficient problems for nonlinear elliptic equations”, ANZIAM, 49:2 (2007), 271–279 | DOI | MR | Zbl
[6] Guy Chavent, Karl Kunisch, “The output least squares identifiability of the duffusion coefficient from an $H^1$-observation in a 2-D elliptic equation”, ESAIM: Control, Optimization and Calculus of Variations, 2002, no. 8, 423–440 | MR | Zbl
[7] Yee Lo Keung, Jun Zou, “Numerical identification of parametersin parabolic system”, Inverse Problems, 1998, no. 14, 83–100 | MR | Zbl
[8] Ian Knowles, “A variational algorithm for electrical impedance tomography”, Inverse Problems, 1998, no. 14, 1513–1525 | MR | Zbl
[9] G. V. Alekseev, “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991 | MR | Zbl
[10] C. V. Alekseev, E. A. Adomavichus, “Theoretical analysis of inverse extremal problems of admixture diffusion in viscous fluids”, J. Inv. Ill-Posed Problems, 9:5 (2001), 435–468 | DOI | MR | Zbl
[11] G. V. Alekseev, “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teorii massoperenosa”, Zh. vych. matem. i mat. fiz., 42:3 (2002), 380–394 | MR | Zbl
[12] G. V. Alekseev, “Edinstvennost i ustoichivost v koeffitsientnykh obratnykh ekstremalnykh zadachakh dlya statsionarnoi modeli massoperenosa”, Dokl. AN, 416:6 (2007), 750–753 | MR | Zbl
[13] G. V. Alekseev, “Koeffitsientnye obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teplomassoperenosa”, Zhurn. vychisl. matem. matem. fiziki, 47:6 (2007), 1055–1076 | MR | Zbl
[14] G. V. Alekseev, O. V. Soboleva, D. A. Tereshko, “Zadachi identifikatsii dlya statsionarnoi modeli massoperenosa”, Prikl. mekh. tekhn. fiz., 49:4 (2008), 24–35 | MR | Zbl
[15] G. V. Alekseev, D. A. Tereshko, Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008
[16] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M., 1974, 240 pp. | MR | Zbl