Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2010_10_1_a2, author = {M. A. Guzev and M. A. Shepelov}, title = {The threshold behavior of mechanical characteristics in {Non-Euclidean} model of continua}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {20--30}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a2/} }
TY - JOUR AU - M. A. Guzev AU - M. A. Shepelov TI - The threshold behavior of mechanical characteristics in Non-Euclidean model of continua JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2010 SP - 20 EP - 30 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a2/ LA - ru ID - DVMG_2010_10_1_a2 ER -
%0 Journal Article %A M. A. Guzev %A M. A. Shepelov %T The threshold behavior of mechanical characteristics in Non-Euclidean model of continua %J Dalʹnevostočnyj matematičeskij žurnal %D 2010 %P 20-30 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a2/ %G ru %F DVMG_2010_10_1_a2
M. A. Guzev; M. A. Shepelov. The threshold behavior of mechanical characteristics in Non-Euclidean model of continua. Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 20-30. http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a2/
[1] V. L. Berdichevskii, L. I. Sedov, “Dinamicheskaya teoriya nepreryvno raspredelennykh dislokatsii. Svyaz s teoriei plastichnosti”, PMM, 31:6 (1967), 981–1000
[2] A. Kadich, D. Edelen, Kalibrovochnaya teoriya dislokatsii i disklinatsii, Mir, M., 1987 | MR
[3] V. E. Panin, Yu. V. Grinyaev, V. I. Danilov i dr., Strukturnye urovni plasticheskoi deformatsii i razrusheniya, Nauka, Novosibirsk, 1990 | Zbl
[4] A. V. Grachev, A. I. Nesterov, and S. G. Ovchinikov, “The Gauge Theory of Point Defects”, Phys. Stat. Sol. (b), 156 (1989), 403–410 | DOI
[5] M. A. Guzev, V. P. Myasnikov, “Termomekhanicheskaya model uprugo-plasticheskogo materiala s defektami struktury”, MTT, 1998, no. 4, 156–172
[6] V. P. Myasnikov, M. A. Guzev, “Affinno-metricheskaya struktura uprugo-plasticheskoi modeli sploshnoi sredy”, Trudy MIAN, 223, 1998, 30–37 | MR | Zbl
[7] V. P. Myasnikov, M. A. Guzev, “Geometricheskaya model defektnoi struktury uprugo-plasticheskoi sploshnoi sredy”, PMTF, 40:2 (1999), 163–173 | MR | Zbl
[8] V. P. Myasnikov, M. A. Guzev, “Neevklidova model deformirovaniya materialov na razlichnykh strukturnykh urovnyakh”, Fizicheskaya mezomekhanika, 3:1 (2000), 5–16
[9] S. K. Godunov, E. I. Romenskii, Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauchnaya kniga, Novosibirsk, 1998 | Zbl
[10] I. Prigozhin, D. Kodepudi, Sovremennaya termodinamika: ot teplovykh dvigatelei do dissipativnykh struktur, Mir, M., 2002
[11] L. D. Landau, E. M. Lifshits, Teoriya polya, Nauka, M., 1988 | MR | Zbl
[12] L. I. Sedov, Mekhanika sploshnoi sredy, 2, Nauka, M., 1973