The threshold behavior of mechanical characteristics in Non-Euclidean model of continua
Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 20-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior of the material containing dislocations is investigated. The Non-Euclidean model of continua is used for description of the stress state. It is shown that the obtained solution is characterized by the threshold behavior.
@article{DVMG_2010_10_1_a2,
     author = {M. A. Guzev and M. A. Shepelov},
     title = {The threshold behavior of mechanical characteristics in {Non-Euclidean} model of continua},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {20--30},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a2/}
}
TY  - JOUR
AU  - M. A. Guzev
AU  - M. A. Shepelov
TI  - The threshold behavior of mechanical characteristics in Non-Euclidean model of continua
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2010
SP  - 20
EP  - 30
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a2/
LA  - ru
ID  - DVMG_2010_10_1_a2
ER  - 
%0 Journal Article
%A M. A. Guzev
%A M. A. Shepelov
%T The threshold behavior of mechanical characteristics in Non-Euclidean model of continua
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2010
%P 20-30
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a2/
%G ru
%F DVMG_2010_10_1_a2
M. A. Guzev; M. A. Shepelov. The threshold behavior of mechanical characteristics in Non-Euclidean model of continua. Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 20-30. http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a2/

[1] V. L. Berdichevskii, L. I. Sedov, “Dinamicheskaya teoriya nepreryvno raspredelennykh dislokatsii. Svyaz s teoriei plastichnosti”, PMM, 31:6 (1967), 981–1000

[2] A. Kadich, D. Edelen, Kalibrovochnaya teoriya dislokatsii i disklinatsii, Mir, M., 1987 | MR

[3] V. E. Panin, Yu. V. Grinyaev, V. I. Danilov i dr., Strukturnye urovni plasticheskoi deformatsii i razrusheniya, Nauka, Novosibirsk, 1990 | Zbl

[4] A. V. Grachev, A. I. Nesterov, and S. G. Ovchinikov, “The Gauge Theory of Point Defects”, Phys. Stat. Sol. (b), 156 (1989), 403–410 | DOI

[5] M. A. Guzev, V. P. Myasnikov, “Termomekhanicheskaya model uprugo-plasticheskogo materiala s defektami struktury”, MTT, 1998, no. 4, 156–172

[6] V. P. Myasnikov, M. A. Guzev, “Affinno-metricheskaya struktura uprugo-plasticheskoi modeli sploshnoi sredy”, Trudy MIAN, 223, 1998, 30–37 | MR | Zbl

[7] V. P. Myasnikov, M. A. Guzev, “Geometricheskaya model defektnoi struktury uprugo-plasticheskoi sploshnoi sredy”, PMTF, 40:2 (1999), 163–173 | MR | Zbl

[8] V. P. Myasnikov, M. A. Guzev, “Neevklidova model deformirovaniya materialov na razlichnykh strukturnykh urovnyakh”, Fizicheskaya mezomekhanika, 3:1 (2000), 5–16

[9] S. K. Godunov, E. I. Romenskii, Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauchnaya kniga, Novosibirsk, 1998 | Zbl

[10] I. Prigozhin, D. Kodepudi, Sovremennaya termodinamika: ot teplovykh dvigatelei do dissipativnykh struktur, Mir, M., 2002

[11] L. D. Landau, E. M. Lifshits, Teoriya polya, Nauka, M., 1988 | MR | Zbl

[12] L. I. Sedov, Mekhanika sploshnoi sredy, 2, Nauka, M., 1973