Numerical solution of control problems for stationary model of heat convection
Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 168-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical algorithm for boundary control problems for stationary model of heat convection is preposed. Results of numerical experiments are presented and analyzed.
@article{DVMG_2009_9_1_a14,
     author = {D. A. Tereshko},
     title = {Numerical solution of control problems for stationary model of heat convection},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {168--175},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a14/}
}
TY  - JOUR
AU  - D. A. Tereshko
TI  - Numerical solution of control problems for stationary model of heat convection
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2009
SP  - 168
EP  - 175
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a14/
LA  - ru
ID  - DVMG_2009_9_1_a14
ER  - 
%0 Journal Article
%A D. A. Tereshko
%T Numerical solution of control problems for stationary model of heat convection
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2009
%P 168-175
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a14/
%G ru
%F DVMG_2009_9_1_a14
D. A. Tereshko. Numerical solution of control problems for stationary model of heat convection. Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 168-175. http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a14/

[1] M. D. Gunzburger, L. Hou, T. P. Svobodny, “The approximation of boundary control problems for fluid flows with an application to control by heating and cooling”, Comput. Fluids, 22 (1993), 239–251 | DOI | MR | Zbl

[2] K. Ito, S. S. Ravindran, “Optimal control of thermally convected fluid flows”, SIAM J. Sci. Comput., 19:6 (1998), 1847–1869 | DOI | MR | Zbl

[3] G. V. Alekseev, “Razreshimost statsionarnykh zadach granichnogo upravleniya dlya uravnenii teplovoi konvektsii”, Sib. mat. zhurn., 39:5 (1998), 982–998 | MR | Zbl

[4] H.-C. Lee, O. Yu. Imanuvilov, “Analysis of optimal control problems for the 2-D stationary Boussinesq equations”, J. Math. Anal. Appl., 242 (2000), 191–211 | DOI | MR | Zbl

[5] G. V. Alekseev, “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991 | MR | Zbl

[6] G. V. Alekseev, “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teorii massoperenosa”, Zhurn. vychisl. matem. matem. fiz., 42:3 (2002), 380–394 | MR | Zbl

[7] G. V. Alekseev, “Koeffitsientnye obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teplomassoperenosa”, Zhurn. vychisl. matem. matem. fiziki, 47:6 (2007), 1055–1076 | MR | Zbl

[8] G. V. Alekseev, D. A. Tereshko, Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008

[9] M. Desai, K. Ito, “Optimal control of Navier – Stokes equations”, SIAM J. Contr. Optim., 32:5 (1994), 1428–1446 | DOI | MR | Zbl

[10] T. Slawig, “PDE-constrained control using FEMLAB-Control of the Navier – Stokes equations”, Numer. Algorithms, 42:2 (2006), 107–126 | DOI | MR | Zbl

[11] J. C. De los Reyes, F. Tröltzsch, “Optimal control of the stationary Navier – Stokes equations with mixed control-state constraints”, SIAM J. Control Optim., 46:2 (2007), 604–629 | DOI | MR | Zbl

[12] L. Dede, “Optimal flow control for Navier – Stokes equations: Drag minimization”, Int. J. Numer. Meth. Fluids, 55:4 (2007), 347–366 | DOI | MR | Zbl