Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2009_9_1_a14, author = {D. A. Tereshko}, title = {Numerical solution of control problems for stationary model of heat convection}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {168--175}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a14/} }
TY - JOUR AU - D. A. Tereshko TI - Numerical solution of control problems for stationary model of heat convection JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2009 SP - 168 EP - 175 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a14/ LA - ru ID - DVMG_2009_9_1_a14 ER -
D. A. Tereshko. Numerical solution of control problems for stationary model of heat convection. Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 168-175. http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a14/
[1] M. D. Gunzburger, L. Hou, T. P. Svobodny, “The approximation of boundary control problems for fluid flows with an application to control by heating and cooling”, Comput. Fluids, 22 (1993), 239–251 | DOI | MR | Zbl
[2] K. Ito, S. S. Ravindran, “Optimal control of thermally convected fluid flows”, SIAM J. Sci. Comput., 19:6 (1998), 1847–1869 | DOI | MR | Zbl
[3] G. V. Alekseev, “Razreshimost statsionarnykh zadach granichnogo upravleniya dlya uravnenii teplovoi konvektsii”, Sib. mat. zhurn., 39:5 (1998), 982–998 | MR | Zbl
[4] H.-C. Lee, O. Yu. Imanuvilov, “Analysis of optimal control problems for the 2-D stationary Boussinesq equations”, J. Math. Anal. Appl., 242 (2000), 191–211 | DOI | MR | Zbl
[5] G. V. Alekseev, “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991 | MR | Zbl
[6] G. V. Alekseev, “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teorii massoperenosa”, Zhurn. vychisl. matem. matem. fiz., 42:3 (2002), 380–394 | MR | Zbl
[7] G. V. Alekseev, “Koeffitsientnye obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teplomassoperenosa”, Zhurn. vychisl. matem. matem. fiziki, 47:6 (2007), 1055–1076 | MR | Zbl
[8] G. V. Alekseev, D. A. Tereshko, Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008
[9] M. Desai, K. Ito, “Optimal control of Navier – Stokes equations”, SIAM J. Contr. Optim., 32:5 (1994), 1428–1446 | DOI | MR | Zbl
[10] T. Slawig, “PDE-constrained control using FEMLAB-Control of the Navier – Stokes equations”, Numer. Algorithms, 42:2 (2006), 107–126 | DOI | MR | Zbl
[11] J. C. De los Reyes, F. Tröltzsch, “Optimal control of the stationary Navier – Stokes equations with mixed control-state constraints”, SIAM J. Control Optim., 46:2 (2007), 604–629 | DOI | MR | Zbl
[12] L. Dede, “Optimal flow control for Navier – Stokes equations: Drag minimization”, Int. J. Numer. Meth. Fluids, 55:4 (2007), 347–366 | DOI | MR | Zbl