Boundary Value Problem for the Transfer Equation of Amplitude Modulated Radiation
Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 150-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper а class of solutions of the non-stationary radiative transfer equation with the harmonic time-dependence have been considered. In this class solubility of the boundary-value problem with generalized matching conditions on the interface are proved and estimations for the solutions are obtained.
@article{DVMG_2009_9_1_a12,
     author = {I. V. Prokhorov and V. M. Moon},
     title = {Boundary {Value} {Problem} for the {Transfer} {Equation} of  {Amplitude} {Modulated} {Radiation}},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {150--160},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a12/}
}
TY  - JOUR
AU  - I. V. Prokhorov
AU  - V. M. Moon
TI  - Boundary Value Problem for the Transfer Equation of  Amplitude Modulated Radiation
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2009
SP  - 150
EP  - 160
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a12/
LA  - ru
ID  - DVMG_2009_9_1_a12
ER  - 
%0 Journal Article
%A I. V. Prokhorov
%A V. M. Moon
%T Boundary Value Problem for the Transfer Equation of  Amplitude Modulated Radiation
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2009
%P 150-160
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a12/
%G ru
%F DVMG_2009_9_1_a12
I. V. Prokhorov; V. M. Moon. Boundary Value Problem for the Transfer Equation of  Amplitude Modulated Radiation. Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 150-160. http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a12/

[1] A. Isimaru, Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnykh sredakh, Mir, M., 1981

[2] K. Keiz, P. Tsvaifel, Lineinaya teoriya perenosa, Mir, M., 1972

[3] V. V. Tuchin, “Issledovanie biotkanei metodami svetorasseyaniya”, Uspekhi fizicheskikh nauk, 167:5 (1997), 517–539 | DOI

[4] S. R. Arridge, “Optical tomography in medical imaging”, Inverse Problems, 15:2 (1999), R41–R93 | DOI | MR | Zbl

[5] K. Ren, G. S. Abdoulaev, G. Bal, A. H. Hielscher, “Algorithm for solving the equation of radiative transfer in the frequency domain”, Optics Letters, 29:6 (2004), 578–580 | DOI

[6] K. Ren, G. Bal, A. Hielscher, “Frequency Domain Optical Tomography Based on the Equation of Radiative Transfer”, SIAM Journal on Scientific Computing, 28:4 (2006), 1463–1489 | DOI | MR | Zbl

[7] V. S. Vladimirov, “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61, 1961, 3–158 | MR

[8] T. A. Germogenova, Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl

[9] I. V. Prokhorov, “Kraevaya zadacha teorii perenosa izlucheniya v neodnorodnoi srede s usloviyami otrazheniya na granitse”, Differentsialnye uravneniya, 36:6 (2000), 848–851 | MR | Zbl

[10] I. V. Prokhorov, “O razreshimosti kraevoi zadachi dlya uravneniya perenosa izlucheniya s obobschennymi usloviyami sopryazheniya na granitse razdela sred”, Izvestiya RAN. Seriya matematicheskaya, 67:6 (2003), 169–192 | DOI | MR | Zbl

[11] I. V. Prokhorov, I. P. Yarovenko, and T. V. Krasnikova, “An extremum problem for the radiation transfer equation”, Journal of Inverse and Ill-Posed Problems, 13:4 (2005), 365–382 | DOI | MR | Zbl

[12] I. V. Prokhorov, “Opredelenie poverkhnosti razdela sred po dannym tomograficheskogo prosvechivaniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 42:10 (2002), 1542–1555 | MR | Zbl

[13] I. V. Prokhorov, I. P. Yarovenko, “Issledovanie zadach opticheskoi tomografii metodami teorii perenosa izlucheniya”, Optika i spektroskopiya, 101:5 (2006), 817–824

[14] I. V. Prokhorov, I. P. Yarovenko, V. G. Nazarov, “Optical tomography problems at layered media”, Inverse Problems, 24:2 (2008), 025019 | DOI | MR | Zbl

[15] Anikonov D.S., A. E. Kovtanyuk and I. V. Prokhorov, Transport Equation and Tomography, VSP, Utrecht – Boston, 2002 | MR

[16] M. Born, E. Volf, Osnovy optiki, Nauka, M., 1973