Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2009_9_1_a12, author = {I. V. Prokhorov and V. M. Moon}, title = {Boundary {Value} {Problem} for the {Transfer} {Equation} of {Amplitude} {Modulated} {Radiation}}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {150--160}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a12/} }
TY - JOUR AU - I. V. Prokhorov AU - V. M. Moon TI - Boundary Value Problem for the Transfer Equation of Amplitude Modulated Radiation JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2009 SP - 150 EP - 160 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a12/ LA - ru ID - DVMG_2009_9_1_a12 ER -
I. V. Prokhorov; V. M. Moon. Boundary Value Problem for the Transfer Equation of Amplitude Modulated Radiation. Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 150-160. http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a12/
[1] A. Isimaru, Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnykh sredakh, Mir, M., 1981
[2] K. Keiz, P. Tsvaifel, Lineinaya teoriya perenosa, Mir, M., 1972
[3] V. V. Tuchin, “Issledovanie biotkanei metodami svetorasseyaniya”, Uspekhi fizicheskikh nauk, 167:5 (1997), 517–539 | DOI
[4] S. R. Arridge, “Optical tomography in medical imaging”, Inverse Problems, 15:2 (1999), R41–R93 | DOI | MR | Zbl
[5] K. Ren, G. S. Abdoulaev, G. Bal, A. H. Hielscher, “Algorithm for solving the equation of radiative transfer in the frequency domain”, Optics Letters, 29:6 (2004), 578–580 | DOI
[6] K. Ren, G. Bal, A. Hielscher, “Frequency Domain Optical Tomography Based on the Equation of Radiative Transfer”, SIAM Journal on Scientific Computing, 28:4 (2006), 1463–1489 | DOI | MR | Zbl
[7] V. S. Vladimirov, “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61, 1961, 3–158 | MR
[8] T. A. Germogenova, Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl
[9] I. V. Prokhorov, “Kraevaya zadacha teorii perenosa izlucheniya v neodnorodnoi srede s usloviyami otrazheniya na granitse”, Differentsialnye uravneniya, 36:6 (2000), 848–851 | MR | Zbl
[10] I. V. Prokhorov, “O razreshimosti kraevoi zadachi dlya uravneniya perenosa izlucheniya s obobschennymi usloviyami sopryazheniya na granitse razdela sred”, Izvestiya RAN. Seriya matematicheskaya, 67:6 (2003), 169–192 | DOI | MR | Zbl
[11] I. V. Prokhorov, I. P. Yarovenko, and T. V. Krasnikova, “An extremum problem for the radiation transfer equation”, Journal of Inverse and Ill-Posed Problems, 13:4 (2005), 365–382 | DOI | MR | Zbl
[12] I. V. Prokhorov, “Opredelenie poverkhnosti razdela sred po dannym tomograficheskogo prosvechivaniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 42:10 (2002), 1542–1555 | MR | Zbl
[13] I. V. Prokhorov, I. P. Yarovenko, “Issledovanie zadach opticheskoi tomografii metodami teorii perenosa izlucheniya”, Optika i spektroskopiya, 101:5 (2006), 817–824
[14] I. V. Prokhorov, I. P. Yarovenko, V. G. Nazarov, “Optical tomography problems at layered media”, Inverse Problems, 24:2 (2008), 025019 | DOI | MR | Zbl
[15] Anikonov D.S., A. E. Kovtanyuk and I. V. Prokhorov, Transport Equation and Tomography, VSP, Utrecht – Boston, 2002 | MR
[16] M. Born, E. Volf, Osnovy optiki, Nauka, M., 1973