Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2009_9_1_a1, author = {M. V. Borovoi}, title = {The defect of weak approximation for homogeneous {spaces.~II}}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {15--23}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a1/} }
M. V. Borovoi. The defect of weak approximation for homogeneous spaces.~II. Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 15-23. http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a1/
[1] M. Borovoi, “The defect of weak approximation for homogeneous spaces”, Ann. Fac. Sci. Toulouse, 8 (1999), 219–233 | DOI | MR | Zbl
[2] J.-L. Colliot-Thélène, “Résolutions flasques des groupes linéaires connexes”, J. reine angew. Math., 618 (2008), 77–133 | MR | Zbl
[3] M. Borovoi, “On weak approximation in homogeneous spaces of simply connected algebraic groups”, Automorphic Functions and Their Applications, Proceedings of Internat. Conf. (Khabarovsk, June 27–July 4, 1988), eds. N. Kuznetsov, V. Bykovsky, IAM FEB USSA AS, Khabarovsk, 1990, 64–81 | MR
[4] J.-J. Sansuc, “Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres”, J. reine angew. Math., 327 (1981), 12–80 | MR | Zbl
[5] R.E. Kottwitz, “Stable trace formula: Elliptic singular terms”, Math. Ann., 275 (1986), 365–399 | DOI | MR | Zbl
[6] J.-L. Colliot-Thélène and F. Xu, “Brauer – Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms” (to appear)
[7] J.S. Milne, Arithmetic Duality Theorems, 2nd, BookSurge, LLS, Charleston, 2006 | MR
[8] T.M. Schlank, Weak approximation for homogeneous spaces, M.Sc. thesis, Tel Aviv University, 2008
[9] J.-L. Colliot-Thélène et B. Kunyavskiĭ, “Groupe de Picard et groupe de Brauer des compactifications lisses d'espaces homogènes”, J. Algebraic Geom., 15 (2006), 733–752 | DOI | MR | Zbl
[10] J. W. S. Cassels and A. Frölich (eds.), Algebraic Number Theory, Academic Press, London, 1967 | MR | Zbl