The defect of weak approximation for homogeneous spaces.~II
Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 15-23

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a right homogeneous space of a connected linear algebraic group $G'$ over a number field $k$, containing a $k$-point $x$. Assume that the stabilizer of $x$ in $G'$ is connected. Using the notion of a quasi-trivial group introduced by Colliot-Thélène, we can represent $X$ in the form $X=H\setminus G$, where $G$ is a quasi-trivial $k$-group and $H\subset G$ is a connected $k$-subgroup. Let $S$ be a finite set of places of $k$. We compute the defect of weak approximation for $X$ with respect to $S$ in terms of the biggest toric quotient $H^{\rm tor}$ of $H$. In particular, we show that if $H^{\rm tor}$ splits over a metacyclic extension of $k$, then $X$ has the weak approximation property. We show also that any homogeneous space $X$ with connected stabilizer (without assumptions on $H^{\rm tor}$) has the real approximation property.
@article{DVMG_2009_9_1_a1,
     author = {M. V. Borovoi},
     title = {The defect of weak approximation for homogeneous {spaces.~II}},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {15--23},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a1/}
}
TY  - JOUR
AU  - M. V. Borovoi
TI  - The defect of weak approximation for homogeneous spaces.~II
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2009
SP  - 15
EP  - 23
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a1/
LA  - en
ID  - DVMG_2009_9_1_a1
ER  - 
%0 Journal Article
%A M. V. Borovoi
%T The defect of weak approximation for homogeneous spaces.~II
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2009
%P 15-23
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a1/
%G en
%F DVMG_2009_9_1_a1
M. V. Borovoi. The defect of weak approximation for homogeneous spaces.~II. Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 15-23. http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a1/