The defect of weak approximation for homogeneous spaces.~II
Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 15-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a right homogeneous space of a connected linear algebraic group $G'$ over a number field $k$, containing a $k$-point $x$. Assume that the stabilizer of $x$ in $G'$ is connected. Using the notion of a quasi-trivial group introduced by Colliot-Thélène, we can represent $X$ in the form $X=H\setminus G$, where $G$ is a quasi-trivial $k$-group and $H\subset G$ is a connected $k$-subgroup. Let $S$ be a finite set of places of $k$. We compute the defect of weak approximation for $X$ with respect to $S$ in terms of the biggest toric quotient $H^{\rm tor}$ of $H$. In particular, we show that if $H^{\rm tor}$ splits over a metacyclic extension of $k$, then $X$ has the weak approximation property. We show also that any homogeneous space $X$ with connected stabilizer (without assumptions on $H^{\rm tor}$) has the real approximation property.
@article{DVMG_2009_9_1_a1,
     author = {M. V. Borovoi},
     title = {The defect of weak approximation for homogeneous {spaces.~II}},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {15--23},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a1/}
}
TY  - JOUR
AU  - M. V. Borovoi
TI  - The defect of weak approximation for homogeneous spaces.~II
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2009
SP  - 15
EP  - 23
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a1/
LA  - en
ID  - DVMG_2009_9_1_a1
ER  - 
%0 Journal Article
%A M. V. Borovoi
%T The defect of weak approximation for homogeneous spaces.~II
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2009
%P 15-23
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a1/
%G en
%F DVMG_2009_9_1_a1
M. V. Borovoi. The defect of weak approximation for homogeneous spaces.~II. Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 15-23. http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a1/

[1] M. Borovoi, “The defect of weak approximation for homogeneous spaces”, Ann. Fac. Sci. Toulouse, 8 (1999), 219–233 | DOI | MR | Zbl

[2] J.-L. Colliot-Thélène, “Résolutions flasques des groupes linéaires connexes”, J. reine angew. Math., 618 (2008), 77–133 | MR | Zbl

[3] M. Borovoi, “On weak approximation in homogeneous spaces of simply connected algebraic groups”, Automorphic Functions and Their Applications, Proceedings of Internat. Conf. (Khabarovsk, June 27–July 4, 1988), eds. N. Kuznetsov, V. Bykovsky, IAM FEB USSA AS, Khabarovsk, 1990, 64–81 | MR

[4] J.-J. Sansuc, “Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres”, J. reine angew. Math., 327 (1981), 12–80 | MR | Zbl

[5] R.E. Kottwitz, “Stable trace formula: Elliptic singular terms”, Math. Ann., 275 (1986), 365–399 | DOI | MR | Zbl

[6] J.-L. Colliot-Thélène and F. Xu, “Brauer – Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms” (to appear)

[7] J.S. Milne, Arithmetic Duality Theorems, 2nd, BookSurge, LLS, Charleston, 2006 | MR

[8] T.M. Schlank, Weak approximation for homogeneous spaces, M.Sc. thesis, Tel Aviv University, 2008

[9] J.-L. Colliot-Thélène et B. Kunyavskiĭ, “Groupe de Picard et groupe de Brauer des compactifications lisses d'espaces homogènes”, J. Algebraic Geom., 15 (2006), 733–752 | DOI | MR | Zbl

[10] J. W. S. Cassels and A. Frölich (eds.), Algebraic Number Theory, Academic Press, London, 1967 | MR | Zbl