Remarks on the Dynamic of the Ruelle Operator and invariant differentials
Dalʹnevostočnyj matematičeskij žurnal, Tome 8 (2008) no. 2, pp. 180-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a rational map. We are interesting in the dynamic of the Ruelle operator of $R$ on suitable spaces of differential forms. In particular the necessary and sufficient conditions (in terms of convergence of sequences of measures) of existence of invariant measurable conformal structures on $J(R)$ are obtained.
@article{DVMG_2008_8_2_a4,
     author = {P. M. Makienko},
     title = {Remarks on the {Dynamic} of the {Ruelle} {Operator} and invariant differentials},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {180--205},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2008_8_2_a4/}
}
TY  - JOUR
AU  - P. M. Makienko
TI  - Remarks on the Dynamic of the Ruelle Operator and invariant differentials
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2008
SP  - 180
EP  - 205
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2008_8_2_a4/
LA  - en
ID  - DVMG_2008_8_2_a4
ER  - 
%0 Journal Article
%A P. M. Makienko
%T Remarks on the Dynamic of the Ruelle Operator and invariant differentials
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2008
%P 180-205
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2008_8_2_a4/
%G en
%F DVMG_2008_8_2_a4
P. M. Makienko. Remarks on the Dynamic of the Ruelle Operator and invariant differentials. Dalʹnevostočnyj matematičeskij žurnal, Tome 8 (2008) no. 2, pp. 180-205. http://geodesic.mathdoc.fr/item/DVMG_2008_8_2_a4/

[1] J. Aaronson, An Introduction to Infinite Ergodic Theory, Math. Surveys and Monographs, 50, 1997 | MR | Zbl

[2] A. Avila, “Infinitesimal perturbations of rational maps”, Nonlinearity, 15 (2002), 695–704 | DOI | MR | Zbl

[3] J. Birman, L.N.M., 1167, 1987, 24–46

[4] H. Bruin, S. van Strien, Expansion of derivatives in one-dimensional dynamics, Preprint, Sept 2000

[5] A. Epstein, Infinitesimal Thurston Rigidity and the Fatou-Shishikura Inequality, Preprint Stony Brook, 1999

[6] A. Eremenko, M. Lyubich, “Dynamical properties of some classes of entire functions”, Annales de l'institute Fourier, 42:4 (1992), 989–1020 | MR | Zbl

[7] A. Douady, J. Hubbard, “A proof of Thurston's topological characterization of rational functions”, Acta Math., 171 (1993), 263–297 | DOI | MR | Zbl

[8] F. Gardiner, N. Lakic, Quasiconformal Teichmuller Theory, Math. Surveys and Monographs, 76, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl

[9] I. Kra, Automorphic forms and Kleinian groups, W. A. Benjamin, Inc, Massachusetts, 1972, 464 pp. | MR | Zbl

[10] U. Krengel, Ergodic theorems, With a supplement by Antoine Brunel, de Gruyter Studies in Mathematics, 6, Walter de Gruyter $\$ Co., Berlin – New York, 1985, 357 pp. | MR | Zbl

[11] G. M. Levin, “On Analytic Approach to The Fatou Conjecture”, Fundamenta Mathematica, 171 (2002), 177–196 | MR | Zbl

[12] M. Lyubich, “On typical behavior of the trajectories of a rational mapping of the sphere”, Soviet. Math. Dokl., 27 (1983), 22–25 | Zbl

[13] P. Makienko, “On measurable field compatible with some rational functions”, Proceedings of conference “Dynamical systems and related topics” (Japan), 1990

[14] P. Makienko, Remarks on Ruelle operator and invariant line fields problem, Preprint of FIM ETH Zurich, July, 2000, 25 pp.

[15] P. Makienko, “Remarks on Ruelle Operator and Invariant Line Fields Problem. II”, Ergodic Theory and Dynamical Systems, 25:5 (2005), 1561–1581 | DOI | MR | Zbl

[16] R. Mane, P. Sad and D. Sullivan, “On the dynamic of rational maps”, Ann. Sci. Ec. Norm. Sup., 16 (1983), 193–217 | MR | Zbl

[17] C. McMullen, “Rational Maps and Kleinian Groups”, Proceeding of the International Congress of Mathematicians, Springer – Verlag, New York, 1990, 889–899 | MR

[18] C. McMullen, “Families of rational maps and iterative root-finding algorithm”, Ann. of Math., 125 (1987), 467–493 | DOI | MR | Zbl

[19] C. McMullen and D. Sullivan, “Quasiconformal homeomorphisms and dynamics III: The Teichmuller space of a rational map”, Adv. Math., 135 (1998), 351–395 | DOI | MR | Zbl

[20] W. de Melo, S. van Strien, One-Dimensional Dynamics, A Series of Modern Surveys in Math., Springer – Verlag, 1993 | MR | Zbl

[21] J. Milnor, On Lattés Maps, Preprint of IM, Stony Brook No 1, 2004

[22] F. Przytycki, “On Measure and Hausdorff dimension of Julia sets of holomorphic Collet-Eckmann maps”, International Conference on Dynamical Systems, Montevideo, 1995, 167–181 | MR

[23] D. Sullivan, “Quasiconformal homeomorphisms and dynamics I, II, III”, Ann. of Math., 2 (1985), 401–418 | DOI | MR | Zbl