Residual stress structure in the molecular dynamics model
Dalʹnevostočnyj matematičeskij žurnal, Tome 8 (2008) no. 2, pp. 152-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

The one-dimensional model of pair-wise interacted oscillators are considered. The analytical representation for residual stress depending on particles initial distribution was obtained. Within the bounds of considered molecular dynamics model the restrictions for the class of the residual stress distribution functions was specified.
@article{DVMG_2008_8_2_a1,
     author = {M. A. Guzev and A. A. Dmitriev and N. A. Permyakov},
     title = {Residual stress structure in the molecular dynamics model},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {152--163},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2008_8_2_a1/}
}
TY  - JOUR
AU  - M. A. Guzev
AU  - A. A. Dmitriev
AU  - N. A. Permyakov
TI  - Residual stress structure in the molecular dynamics model
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2008
SP  - 152
EP  - 163
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2008_8_2_a1/
LA  - ru
ID  - DVMG_2008_8_2_a1
ER  - 
%0 Journal Article
%A M. A. Guzev
%A A. A. Dmitriev
%A N. A. Permyakov
%T Residual stress structure in the molecular dynamics model
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2008
%P 152-163
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2008_8_2_a1/
%G ru
%F DVMG_2008_8_2_a1
M. A. Guzev; A. A. Dmitriev; N. A. Permyakov. Residual stress structure in the molecular dynamics model. Dalʹnevostočnyj matematičeskij žurnal, Tome 8 (2008) no. 2, pp. 152-163. http://geodesic.mathdoc.fr/item/DVMG_2008_8_2_a1/

[1] M. P. Allen, D. J. Tildesley, Computer simulation of liquids, Ox. Uni. Press, 1991 | Zbl

[2] A. M. Krivtsov, N. V. Krivtsova, “Metod chastits i ego ispolzovanie v mekhanike deformiruemogo tverdogo tela”, Dalnevostochnyi matematicheskii zhurnal, 3:2 (2002), 254–276

[3] T. D. Shermergor, Teoriya uprugosti mikro-neodnorodnykh sred, Nauka, M., 1977

[4] M. A. Guzev, Yu. G. Izrailskii, M. A. Shepelov, “Makroskopicheskie kharakteristiki odnomernoi tochno reshaemoi molekulyarnoi modeli na razlichnykh masshtabakh”, Fiz. mezomekh., 5:9 (2006), 53–57

[5] M. A. Guzev, A. A. Dmitriev, N. A. Permyakov, “Tochno reshaemaya model molekulyarnoi dinamiki”, Matematicheskie modeli i metody mekhaniki sploshnykh sred, Sbornik nauchnykh trudov: k 60-letiyu A. A. Burenina, 2007, 65–74

[6] E. I. Golovneva, I. F. Golovnev, V. M. Fomin, “Osobennosti primeneniya metodov mekhaniki sploshnykh sred dlya opisaniya nanostruktur”, Fiz. mezomekh., 8:5 (2005), 47–54

[7] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, v. 1, 2-e izd., isprav., Fizmatlit, M., 2002

[8] E. S. Ventsel, L. A. Ovcharov, Teoriya sluchainykh protsessov i ee inzhenernye primeneniya, Ucheb. posobie dlya vuzov, 2-e izd., Vyssh. shkola, M., 2000

[9] P. J. Withers, H. K. D. H. Bhadeshia, “Residual stress. Part 1 - Measurement techniques”, Material Science and Technology, 17 (2001), 355–365 | DOI

[10] P. J. Withers, H. K. D. H. Bhadeshia, “Residual stress. Part 2 - Nature and origins”, Material Science and Technology, 17 (2001), 366–375 | DOI