Categorical topological spaces and dimensions
Dalʹnevostočnyj matematičeskij žurnal, Tome 8 (2008) no. 1, pp. 96-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

A categorical topological space is a generalized object of an arbitrary Grothendieck site with the structure of its subobjects. The concept of categorical topological space was developed in previous works of author. This paper continuous this theme with an emphasis to applications to dimension theory.
@article{DVMG_2008_8_1_a5,
     author = {E. E. Skurikhin},
     title = {Categorical topological spaces and dimensions},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {96--110},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2008_8_1_a5/}
}
TY  - JOUR
AU  - E. E. Skurikhin
TI  - Categorical topological spaces and dimensions
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2008
SP  - 96
EP  - 110
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2008_8_1_a5/
LA  - ru
ID  - DVMG_2008_8_1_a5
ER  - 
%0 Journal Article
%A E. E. Skurikhin
%T Categorical topological spaces and dimensions
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2008
%P 96-110
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2008_8_1_a5/
%G ru
%F DVMG_2008_8_1_a5
E. E. Skurikhin. Categorical topological spaces and dimensions. Dalʹnevostočnyj matematičeskij žurnal, Tome 8 (2008) no. 1, pp. 96-110. http://geodesic.mathdoc.fr/item/DVMG_2008_8_1_a5/

[1] M. Kashivara, P. Shapira, Puchki na mnogoobraziyakh, Mir, M., 1997, 656 pp.

[2] A. Grothendieck, Seminaire Geometrie Algebriqe 4 [SGA4] (with M. Artin and J.-L. Verdier), Theorie de topos et cogomologie etale de shemas, Lecture Notes in Mathematics, 269, Springer-Verlang, Hedelberg, 1972, 270 pp. | MR | Zbl

[3] E. E. Skurikhin, “Puchkovye kogomologii predpuchkov mnozhestv i nekotorye ikh prilozheniya”, Tr. Mat. in-ta im. V. A. Steklova RAN, 193, 1992, 169–173 | MR | Zbl

[4] E. E. Skurikhin, Puchkovye kogomologii i polnye brauerovy reshetki, Dalnauka, Vladivostok, 1993, 218 pp.

[5] E. E. Skurikhin, “Puchkovye kogomologii i razmernost chastichno uporyadochennykh mnozhestv”, Tr. Mat. in-ta im. V. A. Steklova RAN, 239, 2002, 289–317 | MR | Zbl

[6] E. E. Skurikhin, Puchki na normalnykh i parakompaktnykh reshetkakh, Dalnauka, Vladivostok, 1998, 145 pp.

[7] E. E. Skurikhin, Puchkovye kogomologii i razmernost chastichno uporyadochennykh mnozhestv, Dalnauka, Vladivostok, 2004, 194 pp.

[8] E. E. Skurikhin, Vyalye puchki i puchkovye kogomologii ravnomernykh prostranstv, Preprint No 9 In-ta prikl. matem. DVO RAN, Dalnauka, Vladivostok, 2002, 8 pp. | MR

[9] E. E. Skurikhin, “Puchkovye kogomologii i razmernost ravnomernykh prostranstv”, Uspekhi mat. nauk, 58:4 (2003), 157–158 | MR | Zbl

[10] E. E. Skurikhin, “Kogomologii i razmernost kvaziuporyadochennykh mnozhestv”, Uspekhi mat. nauk, 56:1 (2001), 179–180 | MR | Zbl

[11] E. E. Skurikhin, “Ob odnom klasse kategornykh topologicheskikh prostranstv”, Uspekhi mat. nauk, 63:1 (2008), 167–168 | MR | Zbl

[12] A. G. Sukhonos, Kogomologicheskaya kharakteristika dliny chastichno uporyadochennogo mnozhestva, Preprint No 7 In-ta prikl. matem. DVO RAN, Dalnauka, Vladivostok, 2006, 8 pp.

[13] E. E. Skurikhin, A. G. Sukhonos, “Kogomologii i razmernost prostranstv Chu”, Dalnev. matem. zhurnal, 6:1-2 (2005), 14–22