The generalized reduced modulus in spatial problems of the capacitorial tomography
Dalʹnevostočnyj matematičeskij žurnal, Tome 7 (2007) no. 1, pp. 17-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

The external problem of the spatial capacitorial tomography is considered. The notion of capacitorial defect of an object (a compact set) along Möbius directions in the space has been introduced. The criteria for the capacitorial invisibility of an object along the Möbius direction determined by a pair of points in the accessible region of the space has been obtained. The problem of upper estimates for the capacitorial defect along Möbius directions in the space, as well as it's connection with the notion of generalized reduced modulus by V.N. Dubinin, is there also considered in this paper.
@article{DVMG_2007_7_1_a1,
     author = {V. V. Aseev},
     title = {The generalized reduced modulus in spatial problems of the capacitorial tomography},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {17--29},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2007_7_1_a1/}
}
TY  - JOUR
AU  - V. V. Aseev
TI  - The generalized reduced modulus in spatial problems of the capacitorial tomography
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2007
SP  - 17
EP  - 29
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2007_7_1_a1/
LA  - ru
ID  - DVMG_2007_7_1_a1
ER  - 
%0 Journal Article
%A V. V. Aseev
%T The generalized reduced modulus in spatial problems of the capacitorial tomography
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2007
%P 17-29
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2007_7_1_a1/
%G ru
%F DVMG_2007_7_1_a1
V. V. Aseev. The generalized reduced modulus in spatial problems of the capacitorial tomography. Dalʹnevostočnyj matematičeskij žurnal, Tome 7 (2007) no. 1, pp. 17-29. http://geodesic.mathdoc.fr/item/DVMG_2007_7_1_a1/

[1] J. Väisälä, “Lectures on $n$-dimensional quasiconformal mappings”, Lect. Notes Math., 228, Springer-Verlag, Berlin – Heidelberg – New York, 1971, 144 pp. | MR

[2] B. Fuglede, “Extremal length and functional completion”, Acta Math., 98:3–4 (1957), 171–219 | DOI | MR | Zbl

[3] J. Hesse, “A $p$-extremal length and $p$-capacity equality”, Ark. mat., 13:1 (1975), 131–144 | DOI | MR | Zbl

[4] P. Caraman, “$p$-Capacity and $p$-modulus”, Symp. Math. Inst. naz. alta mat., 18 (1976), 455–484 | MR | Zbl

[5] V. A. Shlyk, “O ravenstve $p$-emkosti i $p$-modulya”, Sib. matem. zhurnal, 34:6 (1993), 216–221 | MR | Zbl

[6] F. W. Gehring, “Extremal length definitions for the conformal capacity of rings in space”, Michigan Math. J., 9 (1962), 137–150 | DOI | MR | Zbl

[7] V. A. Shlyk, “Normalnye oblasti po Gretshu i topologicheskaya ustranimost mnozhestva dlya prostranstvennykh gomeomorfizmov”, Dokl. AN SSSR, 112:3 (1988), 553–555 | MR

[8] V. A. Shlyk, “Stroenie kompaktov, porozhdayuschikh normalnye oblasti i ustranimye osobennosti dlya prostranstva $L^1_p(D)$”, Matem. sb., 181:11 (1990), 1558–1572 | MR | Zbl

[9] V. A. Shlyk, “Normalnye oblasti i ustranimye osobennosti”, Izv. AN, Ser. mat., 57:4 (1993), 92–117 | MR | Zbl

[10] J. Väisälä, “On the null-sets for extremal lengths”, Ann. Acad. Sci. Fenn. Ser. A I, 322 (1962), 1–22 | MR

[11] V. N. Dubinin, Emkosti kondensatorov v geometricheskoi teorii funktsii, Vladivostok, 2003, 116 pp. | Zbl

[12] F. W. Gehring, “Symmetrization of rings in space”, Trans. Amer. Math. Soc., 101:3 (1961), 499–519 | MR | Zbl

[13] G. D. Mostov, “Kvazikonformnye otobrazheniya v $n$-mernom prostranstve i zhestkost giperbolicheskikh prostranstvennykh form”, Matematika. Sb. perevodov, 16:5 (1972), 105–157 | Zbl

[14] P. Caraman, $n$-Dimensional quasiconformal (QCf) mappings, Editura Acad. Romãnia Abacus Press, Tundridge Wells, Kent, 1974, 554 pp. | MR | Zbl

[15] V. N. Dubinin, N. V. Eirikh, “Obobschennyi privedennyi modul”, Dalnevost. matem. zhurnal, 3:2 (2002), 150–164 | MR

[16] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi matem. nauk, 49:1 (1994), 3–76 | MR | Zbl

[17] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR

[18] Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, Izd-vo IL, M., 1962, 268 pp.

[19] V. V. Aseev, “Opisanie NED-mnozhestv, lezhaschikh na gipersfere”, Sovremennye metody teorii kraevykh zadach, Mater. Voronezhskoi vesen. matem. shk. “Pontryaginskie chteniya – 7”, Tsentr.-Chernozemn. kn. izd-vo, Voronezh, 2006, 9

[20] L. Ahlfors, A. Beurling, “Conformal invariants and function-theoretic null-sets”, Acta math., 83 (1950), 101–129 | DOI | MR | Zbl

[21] V. A. Shlyk, “O pronitsaemosti ustranimykh mnozhestv”, Fundam. probl. mat. i mekh., Mat. 41, MGU, M., 1994, 20–21

[22] V. A. Shlyk, “Uslovie $\varepsilon$-obkhvata dlya $N$-kompaktov”, Zap. nauch. semin. POMI, 196, 1991, 154–161 | MR | Zbl

[23] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, M., 1984, 752 pp. | MR

[24] V. A. Shlyk, “Metod sopryazhennykh semeistv v teorii modulei”, Doklady AN SSSR, 306:2 (1989), 297–300 | Zbl

[25] V. V. Aseev, “Moduli semeistv lokalno kvazisimmetricheskikh poverkhnostei”, Sib. matem. zhurnal, 30:3 (1989), 9–15 | MR | Zbl