Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2007_7_1_a1, author = {V. V. Aseev}, title = {The generalized reduced modulus in spatial problems of the capacitorial tomography}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {17--29}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2007_7_1_a1/} }
TY - JOUR AU - V. V. Aseev TI - The generalized reduced modulus in spatial problems of the capacitorial tomography JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2007 SP - 17 EP - 29 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2007_7_1_a1/ LA - ru ID - DVMG_2007_7_1_a1 ER -
V. V. Aseev. The generalized reduced modulus in spatial problems of the capacitorial tomography. Dalʹnevostočnyj matematičeskij žurnal, Tome 7 (2007) no. 1, pp. 17-29. http://geodesic.mathdoc.fr/item/DVMG_2007_7_1_a1/
[1] J. Väisälä, “Lectures on $n$-dimensional quasiconformal mappings”, Lect. Notes Math., 228, Springer-Verlag, Berlin – Heidelberg – New York, 1971, 144 pp. | MR
[2] B. Fuglede, “Extremal length and functional completion”, Acta Math., 98:3–4 (1957), 171–219 | DOI | MR | Zbl
[3] J. Hesse, “A $p$-extremal length and $p$-capacity equality”, Ark. mat., 13:1 (1975), 131–144 | DOI | MR | Zbl
[4] P. Caraman, “$p$-Capacity and $p$-modulus”, Symp. Math. Inst. naz. alta mat., 18 (1976), 455–484 | MR | Zbl
[5] V. A. Shlyk, “O ravenstve $p$-emkosti i $p$-modulya”, Sib. matem. zhurnal, 34:6 (1993), 216–221 | MR | Zbl
[6] F. W. Gehring, “Extremal length definitions for the conformal capacity of rings in space”, Michigan Math. J., 9 (1962), 137–150 | DOI | MR | Zbl
[7] V. A. Shlyk, “Normalnye oblasti po Gretshu i topologicheskaya ustranimost mnozhestva dlya prostranstvennykh gomeomorfizmov”, Dokl. AN SSSR, 112:3 (1988), 553–555 | MR
[8] V. A. Shlyk, “Stroenie kompaktov, porozhdayuschikh normalnye oblasti i ustranimye osobennosti dlya prostranstva $L^1_p(D)$”, Matem. sb., 181:11 (1990), 1558–1572 | MR | Zbl
[9] V. A. Shlyk, “Normalnye oblasti i ustranimye osobennosti”, Izv. AN, Ser. mat., 57:4 (1993), 92–117 | MR | Zbl
[10] J. Väisälä, “On the null-sets for extremal lengths”, Ann. Acad. Sci. Fenn. Ser. A I, 322 (1962), 1–22 | MR
[11] V. N. Dubinin, Emkosti kondensatorov v geometricheskoi teorii funktsii, Vladivostok, 2003, 116 pp. | Zbl
[12] F. W. Gehring, “Symmetrization of rings in space”, Trans. Amer. Math. Soc., 101:3 (1961), 499–519 | MR | Zbl
[13] G. D. Mostov, “Kvazikonformnye otobrazheniya v $n$-mernom prostranstve i zhestkost giperbolicheskikh prostranstvennykh form”, Matematika. Sb. perevodov, 16:5 (1972), 105–157 | Zbl
[14] P. Caraman, $n$-Dimensional quasiconformal (QCf) mappings, Editura Acad. Romãnia Abacus Press, Tundridge Wells, Kent, 1974, 554 pp. | MR | Zbl
[15] V. N. Dubinin, N. V. Eirikh, “Obobschennyi privedennyi modul”, Dalnevost. matem. zhurnal, 3:2 (2002), 150–164 | MR
[16] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi matem. nauk, 49:1 (1994), 3–76 | MR | Zbl
[17] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR
[18] Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, Izd-vo IL, M., 1962, 268 pp.
[19] V. V. Aseev, “Opisanie NED-mnozhestv, lezhaschikh na gipersfere”, Sovremennye metody teorii kraevykh zadach, Mater. Voronezhskoi vesen. matem. shk. “Pontryaginskie chteniya – 7”, Tsentr.-Chernozemn. kn. izd-vo, Voronezh, 2006, 9
[20] L. Ahlfors, A. Beurling, “Conformal invariants and function-theoretic null-sets”, Acta math., 83 (1950), 101–129 | DOI | MR | Zbl
[21] V. A. Shlyk, “O pronitsaemosti ustranimykh mnozhestv”, Fundam. probl. mat. i mekh., Mat. 41, MGU, M., 1994, 20–21
[22] V. A. Shlyk, “Uslovie $\varepsilon$-obkhvata dlya $N$-kompaktov”, Zap. nauch. semin. POMI, 196, 1991, 154–161 | MR | Zbl
[23] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, M., 1984, 752 pp. | MR
[24] V. A. Shlyk, “Metod sopryazhennykh semeistv v teorii modulei”, Doklady AN SSSR, 306:2 (1989), 297–300 | Zbl
[25] V. V. Aseev, “Moduli semeistv lokalno kvazisimmetricheskikh poverkhnostei”, Sib. matem. zhurnal, 30:3 (1989), 9–15 | MR | Zbl