Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2005_6_1_a3, author = {V. N. Dubinin and E. G. Prilepkina}, title = {On the preservation of generalized reduced modulus under some geometric transformations of domains in the plane}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {39--56}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a3/} }
TY - JOUR AU - V. N. Dubinin AU - E. G. Prilepkina TI - On the preservation of generalized reduced modulus under some geometric transformations of domains in the plane JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2005 SP - 39 EP - 56 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a3/ LA - ru ID - DVMG_2005_6_1_a3 ER -
%0 Journal Article %A V. N. Dubinin %A E. G. Prilepkina %T On the preservation of generalized reduced modulus under some geometric transformations of domains in the plane %J Dalʹnevostočnyj matematičeskij žurnal %D 2005 %P 39-56 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a3/ %G ru %F DVMG_2005_6_1_a3
V. N. Dubinin; E. G. Prilepkina. On the preservation of generalized reduced modulus under some geometric transformations of domains in the plane. Dalʹnevostočnyj matematičeskij žurnal, Tome 6 (2005) no. 1, pp. 39-56. http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a3/
[1] V. N. Dubinin, “Obobschennye kondensatory i asimptotika ikh emkostei pri vyrozhdenii nekotorykh plastin”, Zap. nauch. semin. POMI, 302, 2003, 38–51 | MR
[2] Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, Izd-vo inostr. lit., M., 1962
[3] K. Kheiman, Mnogolistnye funktsii, Izd-vo inostr. lit., M., 1960 | MR
[4] V. M. Miklyukov, “O nekotorykh granichnykh zadachakh teorii konformnykh otobrazhenii”, Sib. mat. zhurn., 18:5 (1977), 1111–1124 | MR | Zbl
[5] I. P. Mityuk, Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Kubanskii gosuniversitet, Krasnodar, 1980
[6] P. Duren, M. M. Schiffer, “Robin functions and distortion of capacity under conformal mapping”, Complex Variables, 21 (1993), 189–196 | MR | Zbl
[7] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi mat. nauk, 49:1 (1994), 3–76 | MR | Zbl
[8] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii I, II”, Algebra i analiz, 9:3 (1997), 41–103 ; 5, 1–50 | MR | Zbl | MR | Zbl
[9] A. Yu. Solynin, “Moduli i ekstremalno-metricheskie problemy”, Algebra i analiz, 11:1 (1999), 3–86 | MR | Zbl
[10] P. Duren, “Robin capacity”, Computational methods and Function Theory, CMFT' 97, ed. N. Papamichael, St. Ruscheweyh, E. B. Saff, World scientific Publishing Co, 1999, 177–190 | MR | Zbl
[11] M. D. O'Neill, R. E. Thurman, “Extremal domains for Robin capacity”, Complex Variables, 41 (2000), 91–109 | MR
[12] R. W. Barnard, A. Yu. Solynin, “Local variations and minimal area problem for Caratheodory functions”, Indiana Univ. Math. J., 53:1 (2004), 135–167 | DOI | MR | Zbl
[13] S. Nasyrov, “Robin capacity and lift of infinitely thin airfoils”, Complex Variables, 47:2 (2002), 93–107 | MR | Zbl
[14] A. Vasil'ev, Moduli of families of curves for conformal and quasiconformal mappings, Lect. Notes in Math., 1788, 2002 | MR
[15] V. N. Dubinin, E. G. Prilepkina, “K teoremam edinstvennosti dlya preobrazovanii mnozhestv i kondensatorov na ploskosti”, Dalnevost. mat. zhurn., 3:2 (2002), 137–149 | MR
[16] A. Yu. Solynin, “Polyarizatsiya i funktsionalnye neravenstva”, Algebra i analiz, 8:6 (1996), 148–185 | MR | Zbl
[17] V. A. Shlyk, “O teoreme edinstvennosti dlya simmetrizatsii proizvolnykh kondensatorov”, Sib. mat. zhurn., 1982, no. 2, 165–175 | MR | Zbl
[18] V. N. Dubinin, Emkosti kondensatorov v geometricheskoi teorii funktsii, Izd-vo Dalnevost. un-ta, Vladivostok, 2003
[19] V. N. Dubinin, L. V. Kovalev, “Privedennyi modul kompleksnoi sfery”, Zap. nauch. semin. POMI, 254, 1998, 76–94 | MR
[20] L. V. Kovalev, “Monotonnost obobschennogo privedennogo modulya”, Zap. nauch. semin. POMI, 276, 2001, 219–236 | MR | Zbl
[21] D. Betsakos, “Polarization, conformal invariants, and Brownian motion”, Ann. Acad. Sci. Fen. Math., 23 (1998), 59–82 | MR | Zbl
[22] V. N. Dubinin, “Asimptotika modulya vyrozhdayuschegosya kondensatora i nekotorye ee primeneniya”, Zap. nauch. semin. POMI, 237, 1997, 56–73 | MR | Zbl
[23] V. N. Dubinin, N. V. Eirikh, “Nekotorye primeneniya obobschennykh kondensatorov v teorii analiticheskikh funktsii”, Zap. nauch. cemin. POMI, 314, 2004, 52–75 | MR | Zbl
[24] A. Yu. Solynin, “Granichnoe iskazhenie i ekstremalnye zadachi v nekotorykh klassakh odnolistnykh funktsii”, Zap. nauch. semin. POMI, 204, 1993, 115–142
[25] Ch. Pommerenke, A. Vasil'ev, “Angular derivatives of bounded univalent functions and extremal partions of the unit disk”, Pacific J. Math., 206:2 (2002), 425–450 | DOI | MR | Zbl
[26] Pommerenke Ch., Boundary behaviour of conformal maps, Springer, Berlin, 1992 | MR | Zbl
[27] R. W. Barnard, K. Pearce, A. Yu. Solynin, “Area, width, and logarithmic capacity of convex sets”, Pacific J. Math., 212:1 (2003), 13–23 | DOI | MR | Zbl
[28] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR