Extremal properties of Chebyshev polynomials
Dalʹnevostočnyj matematičeskij žurnal, Tome 5 (2004) no. 2, pp. 169-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using methods of geometric function theory, we get new extremal properties of Chebyshev polynomials. The exact estimates of coefficients, covering and distortion theorems for polynomials with real coefficients and curved majorants on the interval are obtained. In each case, the extremal is Chebyshov polynomial of second, third or fourth kind. These theorems refine some classical results for algebraic polynomials with constraints on the the interval. As a corollary, we get the following analog of Schur's inequality $$ \max\{|P(x)|:x\in[-1,1]\}\le(2n+1)\max\{|P(x)\sqrt{(1+x)/2}|:x\in [-1,1]\} $$ where $P(x)$ is the polynomial of degree $n$ with real coefficients. The equality holds for Chebyshev polynomial of the third kind.
@article{DVMG_2004_5_2_a0,
     author = {V. N. Dubinin and S. I. Kalmykov},
     title = {Extremal properties of {Chebyshev} polynomials},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {169--177},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2004_5_2_a0/}
}
TY  - JOUR
AU  - V. N. Dubinin
AU  - S. I. Kalmykov
TI  - Extremal properties of Chebyshev polynomials
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2004
SP  - 169
EP  - 177
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2004_5_2_a0/
LA  - ru
ID  - DVMG_2004_5_2_a0
ER  - 
%0 Journal Article
%A V. N. Dubinin
%A S. I. Kalmykov
%T Extremal properties of Chebyshev polynomials
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2004
%P 169-177
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2004_5_2_a0/
%G ru
%F DVMG_2004_5_2_a0
V. N. Dubinin; S. I. Kalmykov. Extremal properties of Chebyshev polynomials. Dalʹnevostočnyj matematičeskij žurnal, Tome 5 (2004) no. 2, pp. 169-177. http://geodesic.mathdoc.fr/item/DVMG_2004_5_2_a0/

[1] Ya. L. Geronimus, Teoriya ortogonalnykh mnogochlenov, GITTL, M., 1950

[2] G. Sege, Ortogonalnye mnogochleny, GIFML, M., 1962

[3] V. I. Smirnov, N. A. Lebedev, Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.-L., 1964 | MR

[4] V. I. Lebedev, Funktsionalnyi analiz i vychislitelnaya matematika, Fizmatlit, M., 2000

[5] V. V. Prasolov, Mnogochleny, MTsNMO, M., 2003

[6] P. Borwein, T. Erdelyi, Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995 | MR

[7] V. N. Dubinin, “Konformnye otobrazheniya i neravenstva dlya algebraicheskikh polinomov”, Algebra i analiz, 13:5 (2001), 16–43 | MR | Zbl

[8] V. N. Dubinin, A. V. Olesov, “O primenenii konformnykh otobrazhenii k neravenstvam dlya polinomov”, Zap. nauchn. semin. POMI, 286, 2002, 85–102 | MR | Zbl

[9] Q. I. Rahman, “On a problem of Turan about polynomials with curved majorants”, Trans. Amer. Math. Soc., 163 (1972), 447–455 | MR | Zbl

[10] M. A. Lachance, “Bernstein and Markov inequalities for constrained polynomials”, Lect. Notes Math., 1045, 1984, 125–135 | MR

[11] N. A. Lebedev, Printsip ploschadei v teorii odnolistnykh funktsii, Nauka, M., 1975 | MR | Zbl

[12] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR