Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2003_4_2_a8, author = {R. V. Brizitskii}, title = {Regularity and uniqueness of the solution of the control problem for the stationary equations of magnetic hydrodynamics with mixed boundary conditions}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {264--275}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a8/} }
TY - JOUR AU - R. V. Brizitskii TI - Regularity and uniqueness of the solution of the control problem for the stationary equations of magnetic hydrodynamics with mixed boundary conditions JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2003 SP - 264 EP - 275 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a8/ LA - ru ID - DVMG_2003_4_2_a8 ER -
%0 Journal Article %A R. V. Brizitskii %T Regularity and uniqueness of the solution of the control problem for the stationary equations of magnetic hydrodynamics with mixed boundary conditions %J Dalʹnevostočnyj matematičeskij žurnal %D 2003 %P 264-275 %V 4 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a8/ %G ru %F DVMG_2003_4_2_a8
R. V. Brizitskii. Regularity and uniqueness of the solution of the control problem for the stationary equations of magnetic hydrodynamics with mixed boundary conditions. Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 2, pp. 264-275. http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a8/
[1] G. V. Alekseev, Teoreticheskii analiz obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi neszhimaemoi zhidkosti, Preprint No 1 IPM DVO RAN, Dalnauka, Vladivostok, 2002, 78 pp.
[2] G. V. Alekseev, R. V. Brizitskii, “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi zhidkosti so smeshannymi granichnymi usloviyami”, Dalnevost. mat. zh., 4:1 (2003), 108–126
[3] A. Valli, Orthogonal decompositions of ${\mathbf L}^2(\Omega)^3$, Preprint UTM 493. Department of Mathematics, Galamen, University of Toronto, 1995
[4] A. Alonso and A. Valli, “Some remarks on the characterization of the space of tangential traces of ${\mathbf H}(rot;\Omega)$ and the construction of the extension operator”, Manuscr. Math., 89 (1996), 159–178 | DOI | MR | Zbl
[5] L. Hou, S. Ravindran, “Computations of boundary optimal control problems for an electrically conducting fluid”, J. Comp. Phys., 128 (1996), 319–330 | DOI | MR | Zbl
[6] G. V. Alekseev, “Razreshimost statsionarnykh zadach granichnogo upravleniya dlya uravnenii teplovoi konvektsii”, Sib. mat. zhurn., 39:5 (1998), 982–998 | MR | Zbl
[7] G. V. Alekseev, “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991 | MR | Zbl
[8] G. V. Alekseev, “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teorii massoperenosa”, Zh. vychisl. matem. i matem. fiz., 42:3 (2002), 380–394 | MR | Zbl
[9] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M. | MR
[10] G. V. Alekseev, A. B. Smyshlyaev, D. A. Tereshko, Neodnorodnye kraevye zadachi dlya statsionarnykh uravnenii teplomassoperenosa, Preprint No 19 IPM DVO RAN, Dalnauka, Vladivostok, 2000, 60 pp.