Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2003_4_2_a3, author = {L. M. Zubov and V. A. Eremeyev}, title = {Mechanics of elastic micropolar shells}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {182--225}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a3/} }
L. M. Zubov; V. A. Eremeyev. Mechanics of elastic micropolar shells. Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 2, pp. 182-225. http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a3/
[1] E. L. Aero, E. V. Kuvshinskii, “Osnovnye uravneniya teorii uprugosti sred s vraschatelnym vzaimodeistviem chastits”, FTT, 2:7 (1960), 1399–1409 | MR
[2] A. A. Vakulenko, “Svyaz mikro- i makrosvoistv v uprugoplasticheskikh sredakh”, Itogi nauki i tekhniki. Mekhanika deformiruemogo tverdogo tela, 22, VINITI, M., 1991, 3–54
[3] V. S. Boiko, R. I. Garber, A. M. Kosevich, Obratimaya plastichnost kristallov, Nauka, M., 1991, 280 pp.
[4] K. Z. Galimov, Osnovy nelineinoi teorii tonkikh obolochek, Kazan, 1975 | MR | Zbl
[5] R.Gennis, Biomembrany. Molekulyarnaya struktura i funktsii, Mir, M., 1997, 624 pp.
[6] A. L. Goldenveizer, Teoriya uprugikh tonkikh obolochek, Nauka, M., 1976, 512 pp. | MR
[7] M. A. Grinfeld, Metody mekhaniki sploshnykh sred v teorii fazovykh prevraschenii, Nauka, M., 1990, 312 pp. | MR
[8] I. Dyarmati, Neravnovesnaya termodinamika. Teoriya polya i variatsionnye printsipy, Mir, M., 1974
[9] V. A. Eremeev, “Fazovye prevrascheniya v obolochkakh Kossera”, Izv. vuzov. Severo-Kavkaz. region. Estestv. nauki, 2001, Spetsvypusk. Matematicheskoe modelirovanie, 64–67
[10] V. A. Eremeev, L. M. Zubov, “Usloviya fazovogo ravnovesiya v nelineino-uprugikh sredakh s mikrostrukturoi”, Dokl. RAN, 326:6 (1992), 968–971 | MR | Zbl
[11] V. A. Eremeev, L. M. Zubov, “Ob ustoichivosti uprugikh tel s momentnymi napryazheniyami”, Izv. RAN. MTT, 1994, no. 3, 181–190
[12] V. A. Eremeev, L. M. Zubov, “Teoriya uprugikh i vyazkouprugikh mikropolyarnykh zhidkostei”, PMM, 63:5 (1999), 801–815 | MR | Zbl
[13] P. de Zhen, Fizika zhidkikh kristallov, Mir, M., 1982, 304 pp.
[14] P. A. Zhilin, “Osnovnye uravneniya neklassicheskoi teorii uprugikh obolochek”, Tr. Leningr. politekhn. in-ta, 386, 1982, 29–46
[15] L. M. Zubov, “Statiko-geometricheskaya analogiya i variatsionnye printsipy v nelineinoi bezmomentnoi teorii obolochek”, Tr. 12 Vses. konf. po teorii obolochek i plastin, v. 2, Izd-vo Erev. un-ta, Erevan, 1980, 171–176
[16] L. M. Zubov, Metody nelineinoi teorii uprugosti v teorii obolochek, Izd-vo RGU, Rostov n/D, 1982
[17] L. M. Zubov, “Nelineinaya teoriya izolirovannykh dislokatsii i disklinatsii v uprugikh obolochkakh”, Izv. AN SSSR. MTT, 1989, no. 4, 139–145
[18] L. M. Zubov, “Variatsionnye printsipy i invariantnye integraly dlya nelineino-uprugikh tel s momentnymi napryazheniyami”, Izv. AN SSSR. MTT, 1990, no. 6, 10–16
[19] L. M. Zubov, “Nepreryvno raspredelennye dislokatsii i disklinatsii v uprugikh obolochkakh”, Izv. RAN. MTT, 1996, no. 6, 102–110 | MR
[20] L. M. Zubov, “Obschie resheniya nelineinoi statiki uprugikh obolochek”, Doklady RAN, 382:1 (2002), 58–61 | MR
[21] L. M. Zubov, “O teorii ravnovesiya nelineino uprugikh obolochek”, Izv. vuzov. Severo-Kavkaz. region. Estestv. nauki, 2001, Spetsvypusk. Matematicheskoe modelirovanie, 85–89
[22] L. M. Zubov, “O bolshikh deformatsiyakh izgiba i krucheniya uprugikh obolochek, imeyuschikh formu vintovoi poverkhnosti”, Probl. mekh. deform. tverd. tela, Mezhvuz. sb-k k 70-letiyu akad. N. F. Morozova, izd-vo SPbGU, SPb, 2002, 130–136
[23] L. M. Zubov, M. I. Karyakin, “Dislokatsii i disklinatsii v nelineino uprugikh telakh s momentnymi napryazheniyami”, PMTF, 1990, no. 3, 160–167 | MR
[24] L. M. Zubov, L. M. Filippova, “Teoriya obolochek s nepreryvno raspredelennymi dislokatsiyami”, Doklady RAN, 344:5 (1995), 619–622 | MR | Zbl
[25] I. Ivens, R. Skeilak, Mekhanika i termodinamika biologicheskikh membran, Mir, M., 1982, 304 pp.
[26] Kagava Yasuo, Biomembrany, Vysshaya shkola, M., 1985, 303 pp.
[27] E. Kartan, Rimanova geometriya v ortogonalnom repere, M., 1960
[28] E. I. Kats, V. V. Lebedev, Dinamika zhidkikh kristallov, Nauka, M., 1988, 144 pp.
[29] E. Krener, Obschaya kontinualnaya teoriya dislokatsii i sobstvennykh napryazhenii, Mir, M., 1965, 103 pp.
[30] A. I. Lure, Teoriya uprugosti, Nauka, M., 1970
[31] A. I. Lure, Nelineinaya teoriya uprugosti, Nauka, M., 1980 | MR
[32] V. V. Novozhilov, K. F. Chernykh, E. I. Mikhailovskii, Lineinaya teoriya obolochek, Politekhnika, L., 1991, 656 pp. | MR
[33] V. V. Novozhilov, V. A. Shamina, “O kinematicheskikh granichnykh usloviyakh v zadachakh nelineinoi teorii uprugosti”, Izv. AN SSSR. MTT, 1975, no. 5, 63–74 | MR
[34] V. G. Osmolovskii, Variatsionnaya zadacha o fazovykh perekhodakh v mekhanike sploshnoi sredy, SPb, 2000
[35] V. A. Palmov, “Osnovnye uravneniya teorii nesimmetrichnoi uprugosti”, PMM, 28:3 (1964), 401–408 | MR
[36] K. Trusdell, Pervonachalnyi kurs ratsionalnoi mekhaniki sploshnoi sredy, Mir, M., 1975
[37] K. F. Chernykh, V. A. Shamina, “Nekotorye voprosy nelineinoi klassicheskoi teorii tonkikh sterzhnei i obolochek”, Tr. IX Vsesoyuznoi konf. po teorii obolochek i plastin, L., 1975, 99–103
[38] L. I. Shkutin, Mekhanika deformatsii gibkikh tel, Nauka, Novosibirsk, 1988, 127 pp.
[39] S. S. Antman, Nonlinear Problems of Elasticity, Springer-Verlag, Berlin, Heidelberg, New-York et al, 1995, 751 pp. | MR
[40] Cosserat {E. et F.}, Théorie des corps deformables, Paris, 1909 | Zbl
[41] A. C. Eringen, Microcontinuum Field Theories, v. I, Foundations and Solids, Springer-Verlag, Berlin, Heidelberg, New-York et al, 1999, 325 pp. | MR | Zbl
[42] M. E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane, Clarendon-Press, Oxford, 1993, 149 pp. | MR | Zbl
[43] M. E. Gurtin, Configurational Forces as Basic Concepts of Continuum Physics, Springer-Verlag, Berlin, Heidelberg, New-York et al, 2000, 249 pp. | MR
[44] W. T. Koiter, “Couple–stresses in the theory of elasticity”, Pt I–II, Proc. Koninkl. Neterland. Akad. Wetensh (V), 67, no. 1, 1964, 17–44 | MR
[45] F. M. Leslie, J. C. Laverty, “Continuum theory for biaxial nematic liquid crystals”, Nonlinear Elasticity and Theoretical Mechanics, In honour of A. E. Green, eds. P. M. Naghdi, A. J. M. Spencer, A. H. England, Oxford University Press, Oxford, New York, Tokyo, 1994, 79–89 pp. | Zbl
[46] W. Nowacki, Theory of Asymmetric Elasticity, Pergamon-Press, Oxford,New-York, Toronto et al, 1986, 383 pp. | MR
[47] W. Pietraszkiewicz, Finite Rotations and Langrangian Description in the Non-Linear Theory of Shells, Warszawa, 1979
[48] W. Pietraszkiewicz, “Geometrically nonlinear theories of thin elastic shells”, Advances in Mechanics, 12:1 (1989), 51–130 | MR
[49] H. Pleiner, H. R. Brand, “Nonlinear hydrodynamics of strongly deformed smectic C and C$^{*}$ liquid crystals”, Physica A., 265 (1999), 62–77 | DOI
[50] R. A. Toupin, “Theories of elasticity with couple–stress”, Arch. Ration. Mech. Anal., 17:2 (1964), 85–112 | DOI | MR | Zbl
[51] L. M. Zubov, Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies, Springer-Verlag, Berlin, Heidelberg, New-York et al, 1997, 205 pp. | MR
[52] L. M. Zubov, “Nonlinear Theory of Isolated and Comtinuosly Distributed Dislocations in Elastic Shells”, Archives of Civil Engineering, XLV:2 (1999), 385–396
[53] L. M. Zubov, “Semi-inverse solutions in nonlinear theory of elastic shells”, Arch. Mech., 53:4–5 (2001), 599–610 | MR | Zbl