Problems of regular behaviour and determined chaos in mathematical evolution model of the mendel limited population
Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 2, pp. 289-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the fitness differences model with Mendel limited population in cases of linear and exponential rules of selection. It was made the analytical and numerical investigation of the model. The research of model has shown, that there are such models of evolution, at which there are the regular or chaotic fluctuations of the population number; but the genetic structure becomes stationary. There are described conditions of density depended selection existence with population number fluctuations on background and possibility of cycling and chaotic dynamics of genetic structure.
@article{DVMG_2003_4_2_a10,
     author = {O. L. Zhdanova and E. A. Kolbina and E. Ya. Frisman},
     title = {Problems of regular behaviour and determined chaos in mathematical evolution model of the mendel limited population},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {289--303},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a10/}
}
TY  - JOUR
AU  - O. L. Zhdanova
AU  - E. A. Kolbina
AU  - E. Ya. Frisman
TI  - Problems of regular behaviour and determined chaos in mathematical evolution model of the mendel limited population
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2003
SP  - 289
EP  - 303
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a10/
LA  - ru
ID  - DVMG_2003_4_2_a10
ER  - 
%0 Journal Article
%A O. L. Zhdanova
%A E. A. Kolbina
%A E. Ya. Frisman
%T Problems of regular behaviour and determined chaos in mathematical evolution model of the mendel limited population
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2003
%P 289-303
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a10/
%G ru
%F DVMG_2003_4_2_a10
O. L. Zhdanova; E. A. Kolbina; E. Ya. Frisman. Problems of regular behaviour and determined chaos in mathematical evolution model of the mendel limited population. Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 2, pp. 289-303. http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a10/

[1] A. P. Shapiro, S. P. Luppov, Rekurrentnye uravneniya v teorii populyatsionnoi biologii, Nauka, M., 1982 | MR

[2] E. Ya. Frisman, “Evolyutsiya kharaktera dinamiki chislennosti populyatsii: perekhod k khaosu”, Issledovaniya po matematicheskoi biologii, Puschino, 1996, 78–87

[3] V. A. Ratner, Matematicheskaya populyatsionnaya genetika, Nauka, Novosibirsk, 1977, 126 pp.

[4] E. Ya. Frisman, Pervichnaya geneticheskaya divergentsiya (teoreticheskii analiz i modelirovanie), DVNTs AN SSSR, Vladivostok, 1986, 160 pp.

[5] Yu. M. Svirezhev, V. P. Pasekov, Osnovy matematicheskoi genetiki, Nauka, Moskva, 1982, 512 pp. | MR

[6] E. Ya. Frisman, E. I. Skaletskaya, “Strannye attraktory v prosteishikh modelyakh dinamiki chislennosti biologicheskikh populyatsii”, Obzor prikladnoi i promyshlennoi matematiki, 1:6 (1994), 988–1008 | Zbl

[7] E. Ya. Frisman, S. P. Luppov, I. N. Skokova, A. V. Tuzinkevich, “Slozhnye rezhimy dinamiki chislennosti populyatsii, predstavlennoi dvumya vozrastnymi klassami”, Matematicheskie issledovaniya v populyatsionnoi ekologii, DVO AN SSSR, Vladivostok, 1988, 4–18

[8] Yu. I. Neimark, P. S. Landa, Stokhasticheskie i khaoticheskie kolebaniya, Nauka, Moskva, 1987 | MR

[9] F. Mun, Khaoticheskie kolebaniya, Mir, Moskva, 1990, 312 pp. | MR

[10] E. V. Evdokimov, Problemy regulyarnogo povedeniya i determinirovannogo khaosa v osnovnykh modelyakh populyatsionnoi dinamiki (teoriya i eksperiment), Avtoreferat dissertatsii na soiskanie stepeni doktora biologicheskikh nauk, Krasnoyarsk, 1999