Optimal control in non well posed problem for Stokes equations
Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 1, pp. 18-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the optimal control problem for Stokes system in bounded domain $\Omega$. The bound of $\Omega$ is a union of two smooth disjoint parts: $\partial{\Omega}=\Gamma_{0}{\cup}\Gamma_{1}$, $\Gamma_{0}\cap\Gamma_{1}=\emptyset$. Fluid velocity and stress vector on the part $\Gamma_{0}$ on the boundary simultaneously play a role of control parameters. So, we deal with a system governed by non well posed problem. Extremal condition on the part $\Gamma_{1}$ leads to the necessary a priory estimation for velocity. We use penalization tecnique and study convergence of penalized problem to original problem when penalization parameter tends to zero. The tecnique we use was developed by J.-L. Lions. One of possible applications of obtained result is obtaining the conditions for optimal state (singular optimality system).
@article{DVMG_2003_4_1_a2,
     author = {V. A. Annenkov},
     title = {Optimal control in non well posed problem for {Stokes} equations},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {18--26},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a2/}
}
TY  - JOUR
AU  - V. A. Annenkov
TI  - Optimal control in non well posed problem for Stokes equations
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2003
SP  - 18
EP  - 26
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a2/
LA  - ru
ID  - DVMG_2003_4_1_a2
ER  - 
%0 Journal Article
%A V. A. Annenkov
%T Optimal control in non well posed problem for Stokes equations
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2003
%P 18-26
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a2/
%G ru
%F DVMG_2003_4_1_a2
V. A. Annenkov. Optimal control in non well posed problem for Stokes equations. Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 1, pp. 18-26. http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a2/

[1] Zh.-L. Lions, Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987 | MR

[2] M. M. Lavrentev, L. Ya. Savelev, Lineinye operatory i nekorrektnye zadachi, Nauka, M., 1991 | MR

[3] Zh.-L. Lions, Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR

[4] F. Abergel, “Non-well Posed Problem in Convex Optimal Control”, Applied Mathematics and Optimization, 1988 | Zbl

[5] M. D. Gunzburger, L. S. Hou, T. P. Svobodny, “Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet conditions”, Math. Modelling Numer. Anal., 25 (1991), 711–748 | MR | Zbl

[6] M. D. Gunzburger, L. S. Hou, T. P. Svobodny, “Boundary velocity control of incompressible flow with application to viscous drag reduction”, SIAM J. Control Optim., 30:1 (1992), 167–182 | DOI | MR

[7] Gilles Fourestey, Marwan Moubachir, “Optimal control of Navier-Stokes equations using Lagrange-Galerkin methods”, Rapport de recherche, 4609, October (2002), 88 pp. {http://www.iam.dvo.ru:8100/Redirect/www.inria.fr/rrrt/rr-4609.html}

[8] V. A. Annenkov, “Obobschennye resheniya kraevoi zadachi dlya sistemy Stoksa s zadannym vektorom napryazhenii”, Dalnevostochnyi matematicheskii sbornik, 8, 1999, 23–31

[9] G. V. Alekseev, V. V. Malykin, “Chislennoe issledovanie statsionarnykh ekstremalnykh zadach dlya dvumernykh uravnenii vyazkoi zhidkosti”, Vychislitelnye tekhnologii, 2:5 (1993), 5–16

[10] R. Temam, Uravneniya Nave – Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[11] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[12] A. Yu. Chebotarev, Zadachi granichnogo optimalnogo upravleniya statsionarnymi techeniyami vyazkoi zhidkosti, Preprint IPM DVO RAN, Vladivostok, 1992, 31 pp. | MR