Analysis of inverse extremal problems for the non-linear stationary mass-transfer equations
Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 79-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work deals with inverse extremal problems for the non-linear stationary mass-transfer equations. The states of system are the velocity, pressure of fluid and concentration of substance. The control problem consists in minimizing one of two cost functionals. Existence of optimal solutions is proved and existence of Lagrange multipliers is verified. The optimality conditions for these problems are derived. Regularity solutions of Lagrange multipliers is studied and sufficient conditions of uniqueness of the inverse extremal problems for the concrete functional are derived.
@article{DVMG_2002_3_1_a8,
     author = {G. V. Alekseev and E. A. Adomavichus},
     title = {Analysis of inverse extremal problems for the non-linear stationary mass-transfer equations},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {79--92},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a8/}
}
TY  - JOUR
AU  - G. V. Alekseev
AU  - E. A. Adomavichus
TI  - Analysis of inverse extremal problems for the non-linear stationary mass-transfer equations
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2002
SP  - 79
EP  - 92
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a8/
LA  - ru
ID  - DVMG_2002_3_1_a8
ER  - 
%0 Journal Article
%A G. V. Alekseev
%A E. A. Adomavichus
%T Analysis of inverse extremal problems for the non-linear stationary mass-transfer equations
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2002
%P 79-92
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a8/
%G ru
%F DVMG_2002_3_1_a8
G. V. Alekseev; E. A. Adomavichus. Analysis of inverse extremal problems for the non-linear stationary mass-transfer equations. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 79-92. http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a8/

[1] F. Abergel and E. Casas, “Some optimal control problems of multistate equation appearing in fluid mechanics”, Math. Modeling Numer. Anal., 27 (1993), 223–247 | MR | Zbl

[2] K. Ito, “Boundary temperature control for thermally coupled Navier-Stokes equations”, Int. Ser. Numer. Math., 118 (1994), 211–230 | MR | Zbl

[3] G. V. Alekseev, Teoreticheskii analiz statsionarnykh zadach granichnogo upravleniya dlya uravnenii teplovoi konvektsii, Preprint No 16. IPM DVO RAN, Dalnauka, Vladivostok, 1996, 64 pp.

[4] G. V. Alekseev, “Statsionarnye zadachi granichnogo upravleniya dlya uravnenii teplovoi konvektsii”, Dokl. RAN, 362:2 (1998), 174–177 | MR | Zbl

[5] G. V. Alekseev, “Razreshimost statsionarnykh zadach granichnogo upravleniya dlya uravnenii teplovoi konvektsii”, Sib. mat. zhurn., 39:5 (1998), 982–998 | MR | Zbl

[6] G. V. Alekseev, D. A. Tereshko, “Solvability of the inverse extremal problem for the incompressible heatconducting fluid equations”, J. Inverse Ill-posed Problems., 6:6 (1998), 521–562 | DOI | MR | Zbl

[7] G. V. Alekseev, D. A. Tereshko, “Statsionarnye zadachi optimalnogo upravleniya dlya uravnenii vyazkoi teploprovodnoi zhidkosti”, Sib. zh. ind. mat., 1:2 (1998), 24–44 | MR | Zbl

[8] E. A. Adomavichyus, “O razreshimosti nekotorykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplovoi konvektsii”, Dalnevostochnyi matem. cb., 5, 1998, 74–85 | Zbl

[9] K. Ito and S. S. Ravindran, “Optimal control of thermally convected fluid flows”, SIAM J. Sci. Comput., 19:6 (1998), 1847–1869 | DOI | MR | Zbl

[10] Anca Cãpãtinã and Ruxandra Stavre, “A control problem in bioconvective flow”, J. Math. Kyoto Univ., 37:4 (1998), 585–595

[11] H. C. Lee and O. Yu. Imanuvilov, “Analysis of optimal control problems for the 2-D stationary Boussinesq equations”, J. Math. Anal. Appl., 242:2 (2000), 191–211 | DOI | MR | Zbl

[12] E. A. Adomavichyus, G. V. Alekseev, Teoreticheskii analiz obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii massoperenosa, Preprint No 7. IPM DVO RAN, Dalnauka, Vladivostok, 1999, 44 pp.

[13] E. A. Adomavichyus, G. V. Alekseev, “O razreshimosti neodnorodnykh kraevykh zadach dlya statsionarnykh uravnenii massoperenosa”, Dalnevostochnyi mat. zhurn., 2001, no. 2, 138–153

[14] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR | Zbl

[15] E. A. Adomavichyus, G. V. Alekseev, Teoreticheskii analiz obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii massoperenosa II, Preprint No 18. IPM DVO RAN, Dalnauka, Vladivostok, 1999, 36 pp.

[16] G. V. Alekseev, Teoreticheskii analiz obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplomassoperenosa, Preprint. IPM DVO RAN, Dalnauka, Vladivostok, 2000

[17] M. D. Gunzburger, L. Hou and T. P. Svobodny, “Boundary velocity control of incompressible flow with application to viscous drag reduction”, SIAM J. Contr. Optim., 30:1 (1992), 167–181 | DOI | MR | Zbl