Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2002_3_1_a1, author = {D. S. Anikonov}, title = {Simple and complex mathematical models of stationary transport theory}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {18--23}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a1/} }
D. S. Anikonov. Simple and complex mathematical models of stationary transport theory. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 18-23. http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a1/
[1] V. S. Vladimirov, “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN, 61, 1961, 3–158 | MR
[2] T. A. Germogenova, Lokalnye svoistva resheniya uravneniya perenosa, Nauka, M., 1968, 272 pp. | MR
[3] D. S. Anikonov, “Edinstvennost opredeleniya koeffitsienta uravneniya perenosa pri spetsialnom vide istochnika”, DAN, 284:5 (1985), 511–515 | MR | Zbl
[4] D. S. Anikonov, “Postroenie indikatora neodnorodnosti pri radiatsionnom obsledovanii sredy”, DAN, 357:3 (1997), 324–327
[5] D. S. Anikonov, “Sravnenie dvukh matematicheskikh modelei teorii perenosa izlucheniya”, DAN, 361:2 (1998), 171–173 | MR | Zbl
[6] D. S. Anikonov, I. V. Prokhorov, “Opredelenie koeffitsienta uravneniya perenosa pri energeticheskikh i uglovykh osobennostyakh vneshnego izlucheniya”, DAN, 327:2 (1992), 205–207 | MR | Zbl
[7] D. S. Anikonov, V. G. Nazarov, I. V. Prokhorov, “Vidimye i nevidimye sredy v tomografii”, DAN, 357:5 (1997), 599–603 | MR | Zbl
[8] A. E. Kovtanyuk, “Opredelenie vnutrennei struktury sredy posredstvom mnogokratnogo oblucheniya”, Dalnevostochnyi mat. sbornik, 1995, no. 1, 101–118 | Zbl
[9] D. S. Anikonov, A. E. Kovtanuyk and I. V. Prokhorov, “Investigation of scattering and absorbing media by the method of X-ray tomography”, J. Inv. Ill Posed Problems, 1:4 (1993), 259–281 | DOI | MR | Zbl