Simple and complex mathematical models of stationary transport theory
Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 18-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some papers of transport theory are analyzed. On this based it is noticed that the traditional separation of mathematical models for simple and complex is not always suitable for nonclassical problems. It is given the recommendation for a choice of mathematical models which can increase effectiveness and applied significance of investigation.
@article{DVMG_2002_3_1_a1,
     author = {D. S. Anikonov},
     title = {Simple and complex mathematical models of stationary transport theory},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {18--23},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a1/}
}
TY  - JOUR
AU  - D. S. Anikonov
TI  - Simple and complex mathematical models of stationary transport theory
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2002
SP  - 18
EP  - 23
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a1/
LA  - ru
ID  - DVMG_2002_3_1_a1
ER  - 
%0 Journal Article
%A D. S. Anikonov
%T Simple and complex mathematical models of stationary transport theory
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2002
%P 18-23
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a1/
%G ru
%F DVMG_2002_3_1_a1
D. S. Anikonov. Simple and complex mathematical models of stationary transport theory. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 18-23. http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a1/

[1] V. S. Vladimirov, “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN, 61, 1961, 3–158 | MR

[2] T. A. Germogenova, Lokalnye svoistva resheniya uravneniya perenosa, Nauka, M., 1968, 272 pp. | MR

[3] D. S. Anikonov, “Edinstvennost opredeleniya koeffitsienta uravneniya perenosa pri spetsialnom vide istochnika”, DAN, 284:5 (1985), 511–515 | MR | Zbl

[4] D. S. Anikonov, “Postroenie indikatora neodnorodnosti pri radiatsionnom obsledovanii sredy”, DAN, 357:3 (1997), 324–327

[5] D. S. Anikonov, “Sravnenie dvukh matematicheskikh modelei teorii perenosa izlucheniya”, DAN, 361:2 (1998), 171–173 | MR | Zbl

[6] D. S. Anikonov, I. V. Prokhorov, “Opredelenie koeffitsienta uravneniya perenosa pri energeticheskikh i uglovykh osobennostyakh vneshnego izlucheniya”, DAN, 327:2 (1992), 205–207 | MR | Zbl

[7] D. S. Anikonov, V. G. Nazarov, I. V. Prokhorov, “Vidimye i nevidimye sredy v tomografii”, DAN, 357:5 (1997), 599–603 | MR | Zbl

[8] A. E. Kovtanyuk, “Opredelenie vnutrennei struktury sredy posredstvom mnogokratnogo oblucheniya”, Dalnevostochnyi mat. sbornik, 1995, no. 1, 101–118 | Zbl

[9] D. S. Anikonov, A. E. Kovtanuyk and I. V. Prokhorov, “Investigation of scattering and absorbing media by the method of X-ray tomography”, J. Inv. Ill Posed Problems, 1:4 (1993), 259–281 | DOI | MR | Zbl