Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2001_2_2_a8, author = {V. F. Kozlov and K. V. Koshel' and D. V. Stepanov}, title = {About influence of boundary on the chaotic advection in barotropic quasi-geostrophic models}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {89--98}, publisher = {mathdoc}, volume = {2}, number = {2}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a8/} }
TY - JOUR AU - V. F. Kozlov AU - K. V. Koshel' AU - D. V. Stepanov TI - About influence of boundary on the chaotic advection in barotropic quasi-geostrophic models JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2001 SP - 89 EP - 98 VL - 2 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a8/ LA - ru ID - DVMG_2001_2_2_a8 ER -
%0 Journal Article %A V. F. Kozlov %A K. V. Koshel' %A D. V. Stepanov %T About influence of boundary on the chaotic advection in barotropic quasi-geostrophic models %J Dalʹnevostočnyj matematičeskij žurnal %D 2001 %P 89-98 %V 2 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a8/ %G ru %F DVMG_2001_2_2_a8
V. F. Kozlov; K. V. Koshel'; D. V. Stepanov. About influence of boundary on the chaotic advection in barotropic quasi-geostrophic models. Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 2, pp. 89-98. http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a8/
[1] V. F. Kozlov, A. Yu. Gurulev, “O peremeschenii vikhrei vdol glubokovodnykh zhelobov”, Meteorologiya i Gidrologiya, 1994, no. 6, 70–78
[2] V. F. Kozlov, “Fonovye techeniya v geofizicheskoi gidrodinamike”, Izv. RAN. FAO, 31:2 (1995), 245–250
[3] H. Aref, “Chaotic advection of fluid particles”, Phil. Trans. Roy. Soc., 333:1631 (1990), 73–288, London
[4] V. F. Kozlov, K. V. Koshel, “Barotropnaya model khaoticheskoi advektsii v fonovykh techeniyakh”, Izv. RAN. FAO, 35:1 (1999), 137–144
[5] V. F. Kozlov, K. V. Koshel, “Ob odnoi modeli khaoticheskogo perenosa v barotropnom fonovom techenii”, Izv. RAN. FAO, 36:1 (2000), 119–128 | MR
[6] V. F. Kozlov, K. V. Koshel, “Nekotorye osobennosti khaotizatsii pulsiruyuschego barotropnogo potoka nad osesimmetrichnoi podvodnoi vozvyshennostyu”, Izv. RAN. FAO, 37:3 (2001), 1–12
[7] A. E. Gledzer, “Zakhvat i vysvobozhdenie massy v vikhrevykh strukturakh okeana”, Izv. RAN. FAO, 35:6 (1999), 838–845
[8] M. A. Sokolovskiy, V. N. Zyryanov, P. A. Davies, “On the influence of an isolated submerged obstacle on a barotropic tidal flow”, Geophys. Astrophys. Fluid Dyn., 88:1 (1998), 1–30 | DOI | MR
[9] J. M. Ottino, The kinematic of mixing: stretching, chaos and transport, Reprinted 1997, Cambridge University Press, NY, 1989, 364 pp. | MR | Zbl