About influence of boundary on the chaotic advection in barotropic quasi-geostrophic models
Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 2, pp. 89-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

Barotropic inviscid model of chaotic advection in unidirectional pulsating background flow over a seamount of $\delta$ form located near to rectilinear Boundary is considered. Estimation of breadth of a boundary layer between an exterior flowing current and rotational area, in which there is an interchanging of passive impurity particles, between indicated areas are obtained. It is shown, that influences of boundary leads to breadth of that layer is increased in case of a determination of a hyperbolic point on to boundary.
@article{DVMG_2001_2_2_a8,
     author = {V. F. Kozlov and K. V. Koshel' and D. V. Stepanov},
     title = {About influence of boundary on the chaotic advection in barotropic quasi-geostrophic models},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {89--98},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a8/}
}
TY  - JOUR
AU  - V. F. Kozlov
AU  - K. V. Koshel'
AU  - D. V. Stepanov
TI  - About influence of boundary on the chaotic advection in barotropic quasi-geostrophic models
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2001
SP  - 89
EP  - 98
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a8/
LA  - ru
ID  - DVMG_2001_2_2_a8
ER  - 
%0 Journal Article
%A V. F. Kozlov
%A K. V. Koshel'
%A D. V. Stepanov
%T About influence of boundary on the chaotic advection in barotropic quasi-geostrophic models
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2001
%P 89-98
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a8/
%G ru
%F DVMG_2001_2_2_a8
V. F. Kozlov; K. V. Koshel'; D. V. Stepanov. About influence of boundary on the chaotic advection in barotropic quasi-geostrophic models. Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 2, pp. 89-98. http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a8/

[1] V. F. Kozlov, A. Yu. Gurulev, “O peremeschenii vikhrei vdol glubokovodnykh zhelobov”, Meteorologiya i Gidrologiya, 1994, no. 6, 70–78

[2] V. F. Kozlov, “Fonovye techeniya v geofizicheskoi gidrodinamike”, Izv. RAN. FAO, 31:2 (1995), 245–250

[3] H. Aref, “Chaotic advection of fluid particles”, Phil. Trans. Roy. Soc., 333:1631 (1990), 73–288, London

[4] V. F. Kozlov, K. V. Koshel, “Barotropnaya model khaoticheskoi advektsii v fonovykh techeniyakh”, Izv. RAN. FAO, 35:1 (1999), 137–144

[5] V. F. Kozlov, K. V. Koshel, “Ob odnoi modeli khaoticheskogo perenosa v barotropnom fonovom techenii”, Izv. RAN. FAO, 36:1 (2000), 119–128 | MR

[6] V. F. Kozlov, K. V. Koshel, “Nekotorye osobennosti khaotizatsii pulsiruyuschego barotropnogo potoka nad osesimmetrichnoi podvodnoi vozvyshennostyu”, Izv. RAN. FAO, 37:3 (2001), 1–12

[7] A. E. Gledzer, “Zakhvat i vysvobozhdenie massy v vikhrevykh strukturakh okeana”, Izv. RAN. FAO, 35:6 (1999), 838–845

[8] M. A. Sokolovskiy, V. N. Zyryanov, P. A. Davies, “On the influence of an isolated submerged obstacle on a barotropic tidal flow”, Geophys. Astrophys. Fluid Dyn., 88:1 (1998), 1–30 | DOI | MR

[9] J. M. Ottino, The kinematic of mixing: stretching, chaos and transport, Reprinted 1997, Cambridge University Press, NY, 1989, 364 pp. | MR | Zbl