Noneuclidean structure of internal stress in continuum
Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 2, pp. 29-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the choice in determination of internal stress in continuum is defined by the noneuclidean geometric objects charactirizing defects of internal material structure.
@article{DVMG_2001_2_2_a2,
     author = {M. A. Guzev and V. P. Myasnikov},
     title = {Noneuclidean structure of internal stress in continuum},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {29--44},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a2/}
}
TY  - JOUR
AU  - M. A. Guzev
AU  - V. P. Myasnikov
TI  - Noneuclidean structure of internal stress in continuum
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2001
SP  - 29
EP  - 44
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a2/
LA  - ru
ID  - DVMG_2001_2_2_a2
ER  - 
%0 Journal Article
%A M. A. Guzev
%A V. P. Myasnikov
%T Noneuclidean structure of internal stress in continuum
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2001
%P 29-44
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a2/
%G ru
%F DVMG_2001_2_2_a2
M. A. Guzev; V. P. Myasnikov. Noneuclidean structure of internal stress in continuum. Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 2, pp. 29-44. http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a2/

[1] S. K. Godunov, E. I. Romenskii, Elementy mekhaniki sploshnoi sredy, Nauchnaya kniga, Novosibirsk, 1998, 268 pp.

[2] K. Kondo, “On the geometrical and physical foundations of the theory of yielding”, Proc. 2nd Japan Nat. Congr. Appl. Mech., Tokyo, 1953, 41–47 | MR

[3] B. A. Bilby, R. Bullough, E. Smith, “Continuos distributions of dislocations: a new application of the methods of non-Reimannian geometry”, Proc. Roy. Soc. A, 231, 1955, 263–273 | MR

[4] A. Kadich, D. Edelen, Kalibrovochnaya teoriya dislokatsii i disklinatsii, Mir, M., 1987, 168 pp. | MR

[5] Fizicheskaya mezomekhanika i kompyuternoe konstruirovanie materialov, v. 1, ed. V. E. Panin, Nauka, Novosibirsk, 1995, 297 pp.

[6] Fizicheskaya mezomekhanika i kompyuternoe konstruirovanie materialov, v. 2, ed. V. E. Panin, Nauka, Novosibirsk, 1995, 320 pp.

[7] V. P. Myasnikov, M. A. Guzev, “Neevklidova model deformirovaniya materialov na razlichnykh strukturnykh urovnyakh”, Fizicheskaya mezomekhanika, 3:1 (2000), 5–16

[8] G. N. Chernyshov, A. L. Popov, V. M. Kozintsev, I. I. Ponomarev, Ostatochnye napryazheniya v deformiruemykh tverdykh telakh, Nauka, M., 1996, 240 pp.

[9] L. D. Landau, E. M. Lifshits, Teoriya uprugosti, Nauka, M., 1987, 248 pp. | MR | Zbl

[10] N. I. Ostrosablin, “Ob uravneniyakh Beltrami-Michella i operatore Sen-Venana”, Dinamika sploshnoi sredy. Sbornik nauchnykh trudov, 116 (2000), 211–217, Novosibirsk | MR | Zbl

[11] L. D. Landau, E. M. Lifshits, Teoriya polya, Nauka, M., 1988, 512 pp. | MR

[12] B. A. Dubrovin, S. P. Novikov, L. T. Fomenko, Sovremennaya geometriya: Metody i prilozheniya, Nauka, M., 1986, 760 pp. | MR