Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2001_2_2_a2, author = {M. A. Guzev and V. P. Myasnikov}, title = {Noneuclidean structure of internal stress in continuum}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {29--44}, publisher = {mathdoc}, volume = {2}, number = {2}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a2/} }
M. A. Guzev; V. P. Myasnikov. Noneuclidean structure of internal stress in continuum. Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 2, pp. 29-44. http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a2/
[1] S. K. Godunov, E. I. Romenskii, Elementy mekhaniki sploshnoi sredy, Nauchnaya kniga, Novosibirsk, 1998, 268 pp.
[2] K. Kondo, “On the geometrical and physical foundations of the theory of yielding”, Proc. 2nd Japan Nat. Congr. Appl. Mech., Tokyo, 1953, 41–47 | MR
[3] B. A. Bilby, R. Bullough, E. Smith, “Continuos distributions of dislocations: a new application of the methods of non-Reimannian geometry”, Proc. Roy. Soc. A, 231, 1955, 263–273 | MR
[4] A. Kadich, D. Edelen, Kalibrovochnaya teoriya dislokatsii i disklinatsii, Mir, M., 1987, 168 pp. | MR
[5] Fizicheskaya mezomekhanika i kompyuternoe konstruirovanie materialov, v. 1, ed. V. E. Panin, Nauka, Novosibirsk, 1995, 297 pp.
[6] Fizicheskaya mezomekhanika i kompyuternoe konstruirovanie materialov, v. 2, ed. V. E. Panin, Nauka, Novosibirsk, 1995, 320 pp.
[7] V. P. Myasnikov, M. A. Guzev, “Neevklidova model deformirovaniya materialov na razlichnykh strukturnykh urovnyakh”, Fizicheskaya mezomekhanika, 3:1 (2000), 5–16
[8] G. N. Chernyshov, A. L. Popov, V. M. Kozintsev, I. I. Ponomarev, Ostatochnye napryazheniya v deformiruemykh tverdykh telakh, Nauka, M., 1996, 240 pp.
[9] L. D. Landau, E. M. Lifshits, Teoriya uprugosti, Nauka, M., 1987, 248 pp. | MR | Zbl
[10] N. I. Ostrosablin, “Ob uravneniyakh Beltrami-Michella i operatore Sen-Venana”, Dinamika sploshnoi sredy. Sbornik nauchnykh trudov, 116 (2000), 211–217, Novosibirsk | MR | Zbl
[11] L. D. Landau, E. M. Lifshits, Teoriya polya, Nauka, M., 1988, 512 pp. | MR
[12] B. A. Dubrovin, S. P. Novikov, L. T. Fomenko, Sovremennaya geometriya: Metody i prilozheniya, Nauka, M., 1986, 760 pp. | MR