On a convergence rate of finite element method in Signorini's problem with nonhomogeneous boundary condition
Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 1, pp. 77-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The finite element method are investigated for solution of Signorini's problem.
@article{DVMG_2001_2_1_a6,
     author = {R. V. Namm and G. Woo},
     title = {On a convergence rate of finite element method in {Signorini's} problem with nonhomogeneous boundary condition},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {77--80},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a6/}
}
TY  - JOUR
AU  - R. V. Namm
AU  - G. Woo
TI  - On a convergence rate of finite element method in Signorini's problem with nonhomogeneous boundary condition
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2001
SP  - 77
EP  - 80
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a6/
LA  - en
ID  - DVMG_2001_2_1_a6
ER  - 
%0 Journal Article
%A R. V. Namm
%A G. Woo
%T On a convergence rate of finite element method in Signorini's problem with nonhomogeneous boundary condition
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2001
%P 77-80
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a6/
%G en
%F DVMG_2001_2_1_a6
R. V. Namm; G. Woo. On a convergence rate of finite element method in Signorini's problem with nonhomogeneous boundary condition. Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 1, pp. 77-80. http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a6/

[1] L. A. Oganesian and L. A. Rukhovets, Variationaly-difference methods for solution of ellliptic equations, pabl. AS Arm. SSR, Erevan, 1979

[2] G. I. Marchuk and V. I. Agoshkov, Introduction to projectively-grid methods, Nauka, M., 1981 | MR

[3] I. Babushka and H. S. Oh, “The p-version of the finite element method for domains with corners and for infinite domains”, Numer. Methods PDEs, 6:4 (1990), 371–392 | MR

[4] S. Brenner, “Multigrid methods for the computation of singular solutions and stress intensity factor I: Corner singularities”, Math. Comp., 226:68 (1999), 559–583 | DOI | MR | Zbl

[5] S. Kim, G. Woo and T. Park, “A note on a finite element method dealing with corner singularities”, Korea J. Comput. and Appl. Math., 7:2 (2000), 373–386 | MR | Zbl

[6] R. Glowinski, Numerical method for nonlinear variational problem, Springer, New York, 1984 | MR | Zbl

[7] I. Glavaček, J. Haslinger, I. Nečas, J. Lovišek, Nomerical solution of variational inequalities, Springer, Berlin –Heideberg –New York, 1988

[8] G. Dovaut, J. L. Lions, Les inequations en mecanique et en phisique, Dunod, Paris, 1972 | MR

[9] S. G. Mikhlin, Linear equations in partial derivatives, Higher School, M., 1997

[10] R. V. Namm, A. Ya. Zolotukhin, “The finite element method for solution of Signorini's problem”, CFD Journal, 4:4 (1996), 509–515

[11] R. V. Namm, “Stable methods for ill-posed variational inequalities in mechanics”, Lecture Notes in Economics and Mathematical Systems, 452, 1997, 214–228 | MR | Zbl