Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2001_2_1_a6, author = {R. V. Namm and G. Woo}, title = {On a convergence rate of finite element method in {Signorini's} problem with nonhomogeneous boundary condition}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {77--80}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a6/} }
TY - JOUR AU - R. V. Namm AU - G. Woo TI - On a convergence rate of finite element method in Signorini's problem with nonhomogeneous boundary condition JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2001 SP - 77 EP - 80 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a6/ LA - en ID - DVMG_2001_2_1_a6 ER -
%0 Journal Article %A R. V. Namm %A G. Woo %T On a convergence rate of finite element method in Signorini's problem with nonhomogeneous boundary condition %J Dalʹnevostočnyj matematičeskij žurnal %D 2001 %P 77-80 %V 2 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a6/ %G en %F DVMG_2001_2_1_a6
R. V. Namm; G. Woo. On a convergence rate of finite element method in Signorini's problem with nonhomogeneous boundary condition. Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 1, pp. 77-80. http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a6/
[1] L. A. Oganesian and L. A. Rukhovets, Variationaly-difference methods for solution of ellliptic equations, pabl. AS Arm. SSR, Erevan, 1979
[2] G. I. Marchuk and V. I. Agoshkov, Introduction to projectively-grid methods, Nauka, M., 1981 | MR
[3] I. Babushka and H. S. Oh, “The p-version of the finite element method for domains with corners and for infinite domains”, Numer. Methods PDEs, 6:4 (1990), 371–392 | MR
[4] S. Brenner, “Multigrid methods for the computation of singular solutions and stress intensity factor I: Corner singularities”, Math. Comp., 226:68 (1999), 559–583 | DOI | MR | Zbl
[5] S. Kim, G. Woo and T. Park, “A note on a finite element method dealing with corner singularities”, Korea J. Comput. and Appl. Math., 7:2 (2000), 373–386 | MR | Zbl
[6] R. Glowinski, Numerical method for nonlinear variational problem, Springer, New York, 1984 | MR | Zbl
[7] I. Glavaček, J. Haslinger, I. Nečas, J. Lovišek, Nomerical solution of variational inequalities, Springer, Berlin –Heideberg –New York, 1988
[8] G. Dovaut, J. L. Lions, Les inequations en mecanique et en phisique, Dunod, Paris, 1972 | MR
[9] S. G. Mikhlin, Linear equations in partial derivatives, Higher School, M., 1997
[10] R. V. Namm, A. Ya. Zolotukhin, “The finite element method for solution of Signorini's problem”, CFD Journal, 4:4 (1996), 509–515
[11] R. V. Namm, “Stable methods for ill-posed variational inequalities in mechanics”, Lecture Notes in Economics and Mathematical Systems, 452, 1997, 214–228 | MR | Zbl