@article{DVMG_2001_2_1_a4,
author = {G. Sh. Tsitsiashvili and M. A. Osipova},
title = {Transition phenomena in mathematical theory of epidemic},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {58--67},
year = {2001},
volume = {2},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a4/}
}
G. Sh. Tsitsiashvili; M. A. Osipova. Transition phenomena in mathematical theory of epidemic. Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 1, pp. 58-67. http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a4/
[1] N. T. J. Bailey, The Mathematical Theory of Infections Diseases, Griffin, London, 1975 | Zbl
[2] P. Whittle, “The Outcome of a Stochastic Epidemic – a Note on Bailey's Paper”, Biometrika, 42 (1955), 116–122 | MR | Zbl
[3] A. D. Barbour, “The Principle of Diffusion of Arbitrary Constants”, J. Appl. Probab., 9 (1972), 519–541 | DOI | MR | Zbl
[4] H. E. Daniels, “The Distribution of the Total Size of an Epidemic”, Fifth Berkeley Symp. Math. Statist., Probab., v. 4, Univ. California Press, Berkeley, 1967, 281–283
[5] G. Reinert, “The Asimptotic Evolution of the General Stochastic Epidemic”, Ann. Appl. Probab., 5 (1995), 1061–1086 | DOI | MR | Zbl
[6] M. S. Bartlett, Stochastic Population Models in Ecology and Epidemiology, Methnen, London, 1960 | MR | Zbl
[7] G. Sh. Tsitsiashvili, “Transformation of an epidemic model to a random walk and its management”, Math. Scientist, 20 (1995), 103–106 | MR | Zbl
[8] D. Shtoiyan, Kachestvennye svoistva i otsenki stokhasticheskikh modelei, Mir, M., 1979, 268 pp.
[9] A. N. Shiryaev, Veroyatnost, Nauka, M., 1989, 640 pp. | MR