Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2001_2_1_a4, author = {G. Sh. Tsitsiashvili and M. A. Osipova}, title = {Transition phenomena in mathematical theory of epidemic}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {58--67}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a4/} }
TY - JOUR AU - G. Sh. Tsitsiashvili AU - M. A. Osipova TI - Transition phenomena in mathematical theory of epidemic JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2001 SP - 58 EP - 67 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a4/ LA - ru ID - DVMG_2001_2_1_a4 ER -
G. Sh. Tsitsiashvili; M. A. Osipova. Transition phenomena in mathematical theory of epidemic. Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 1, pp. 58-67. http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a4/
[1] N. T. J. Bailey, The Mathematical Theory of Infections Diseases, Griffin, London, 1975 | Zbl
[2] P. Whittle, “The Outcome of a Stochastic Epidemic – a Note on Bailey's Paper”, Biometrika, 42 (1955), 116–122 | MR | Zbl
[3] A. D. Barbour, “The Principle of Diffusion of Arbitrary Constants”, J. Appl. Probab., 9 (1972), 519–541 | DOI | MR | Zbl
[4] H. E. Daniels, “The Distribution of the Total Size of an Epidemic”, Fifth Berkeley Symp. Math. Statist., Probab., v. 4, Univ. California Press, Berkeley, 1967, 281–283
[5] G. Reinert, “The Asimptotic Evolution of the General Stochastic Epidemic”, Ann. Appl. Probab., 5 (1995), 1061–1086 | DOI | MR | Zbl
[6] M. S. Bartlett, Stochastic Population Models in Ecology and Epidemiology, Methnen, London, 1960 | MR | Zbl
[7] G. Sh. Tsitsiashvili, “Transformation of an epidemic model to a random walk and its management”, Math. Scientist, 20 (1995), 103–106 | MR | Zbl
[8] D. Shtoiyan, Kachestvennye svoistva i otsenki stokhasticheskikh modelei, Mir, M., 1979, 268 pp.
[9] A. N. Shiryaev, Veroyatnost, Nauka, M., 1989, 640 pp. | MR