Transition phenomena in mathematical theory of epidemic
Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 1, pp. 58-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of the threshold Whittle's theorem of mathematical epidemic theory is made for a case when a number of susceptibles infected by an end of an epidemic is near its extremal values. It allows to give qualitative long-term prognosis of epidemic's damage. An algorythm of fast and precise calculation of a distribution of epidemic's damage for small meanings which correspond to short-term prognosis is constructed.
@article{DVMG_2001_2_1_a4,
     author = {G. Sh. Tsitsiashvili and M. A. Osipova},
     title = {Transition phenomena in mathematical theory of epidemic},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {58--67},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a4/}
}
TY  - JOUR
AU  - G. Sh. Tsitsiashvili
AU  - M. A. Osipova
TI  - Transition phenomena in mathematical theory of epidemic
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2001
SP  - 58
EP  - 67
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a4/
LA  - ru
ID  - DVMG_2001_2_1_a4
ER  - 
%0 Journal Article
%A G. Sh. Tsitsiashvili
%A M. A. Osipova
%T Transition phenomena in mathematical theory of epidemic
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2001
%P 58-67
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a4/
%G ru
%F DVMG_2001_2_1_a4
G. Sh. Tsitsiashvili; M. A. Osipova. Transition phenomena in mathematical theory of epidemic. Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 1, pp. 58-67. http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a4/

[1] N. T. J. Bailey, The Mathematical Theory of Infections Diseases, Griffin, London, 1975 | Zbl

[2] P. Whittle, “The Outcome of a Stochastic Epidemic – a Note on Bailey's Paper”, Biometrika, 42 (1955), 116–122 | MR | Zbl

[3] A. D. Barbour, “The Principle of Diffusion of Arbitrary Constants”, J. Appl. Probab., 9 (1972), 519–541 | DOI | MR | Zbl

[4] H. E. Daniels, “The Distribution of the Total Size of an Epidemic”, Fifth Berkeley Symp. Math. Statist., Probab., v. 4, Univ. California Press, Berkeley, 1967, 281–283

[5] G. Reinert, “The Asimptotic Evolution of the General Stochastic Epidemic”, Ann. Appl. Probab., 5 (1995), 1061–1086 | DOI | MR | Zbl

[6] M. S. Bartlett, Stochastic Population Models in Ecology and Epidemiology, Methnen, London, 1960 | MR | Zbl

[7] G. Sh. Tsitsiashvili, “Transformation of an epidemic model to a random walk and its management”, Math. Scientist, 20 (1995), 103–106 | MR | Zbl

[8] D. Shtoiyan, Kachestvennye svoistva i otsenki stokhasticheskikh modelei, Mir, M., 1979, 268 pp.

[9] A. N. Shiryaev, Veroyatnost, Nauka, M., 1989, 640 pp. | MR