Solvability boundary value problem for degenerate quasilinear parabolic equation in a~domain with nontube boundary
Dalʹnevostočnyj matematičeskij žurnal, Tome 1 (2000) no. 1, pp. 63-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a quasilinear parabolic equation in nontube domain, which degenerate on a solution. We suppose the essential boundedness of the derivative of the function that define the curvilinear boundary, and prove an existence and uniqness theorems for the first boundary-value problem. We use compactness methods for functions from Banach space scale. At the Preliminary part establish abstract theorems about completeness certain system of function in nontube domain.
@article{DVMG_2000_1_1_a8,
     author = {N. E. Istomina},
     title = {Solvability boundary value problem for degenerate quasilinear parabolic equation in a~domain with nontube boundary},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {63--73},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a8/}
}
TY  - JOUR
AU  - N. E. Istomina
TI  - Solvability boundary value problem for degenerate quasilinear parabolic equation in a~domain with nontube boundary
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2000
SP  - 63
EP  - 73
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a8/
LA  - ru
ID  - DVMG_2000_1_1_a8
ER  - 
%0 Journal Article
%A N. E. Istomina
%T Solvability boundary value problem for degenerate quasilinear parabolic equation in a~domain with nontube boundary
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2000
%P 63-73
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a8/
%G ru
%F DVMG_2000_1_1_a8
N. E. Istomina. Solvability boundary value problem for degenerate quasilinear parabolic equation in a~domain with nontube boundary. Dalʹnevostočnyj matematičeskij žurnal, Tome 1 (2000) no. 1, pp. 63-73. http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a8/

[1] S. G. Krein, G. I. Laptev, “Abstraktnaya skhema rassmotreniya parabolicheskikh zadach v netsilindricheskikh oblastyakh”, Differentsialnye uravneniya, 5:8 (1969), 1458–1469 | MR | Zbl

[2] S. G. Krein, “Povedenie reshenii ellipticheskikh zadach pri variatsii oblasti”, Studia mathematica, 31 (1968), 411–424 | MR | Zbl

[3] A. G. Podgaev, “Ob otnositelnoi kompaktnosti mnozhestva abstraktnykh funktsii iz shkaly banakhovykh prostranstv”, Sib. mat. zhurn., 34:2 (1993), 135–137 | MR

[4] A. G. Podgaev, “O svoistve kompaktnosti nelineinykh mnozhestv i odno ego primenenie”, Neklassicheskie zadachi uravnenii matematicheskoi fiziki, IM SO AN SSSR, Novosibirsk, 1982, 134–138

[5] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[6] O. A. Ladyzhenskaya, Kraevye zadachi metematicheskoi fiziki, Nauka, M., 1973 | MR

[7] O. A. Ladyzhenskaya, N. N. Uraltseva, Kraevye zadachi dlya lineinykh i kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1973

[8] N. E. Istomina, O korrektnosti pervoi kraevoi zadachi dlya vyrozhdayuschegosya na reshenii parabolicheskogo uravneniya v oblasti s netsilindricheskoi granitsei, Preprint No 5 In-ta prikl. matem. DVO RAN, Dalnauka, Vladivostok, 2000, 24 pp.