On three disjoint domains
Dalʹnevostočnyj matematičeskij žurnal, Tome 1 (2000) no. 1, pp. 3-7
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with the following problem, stated in [Zbl.830.30014] by V. N. Dubinin and earlier, in different form, by G. P. Bakhtina [Zbl.585.30027]. Let $a_0=0$, $|a_1|=\dots=|a_n|=1$, $a_k\in B_k\in\overline{\mathbb C}$, where $B_0,\dots,B_n$ are disjoint domains, and $B_1,\dots,B_n$ are symmetric about the unit circle. Find the exact upper bound for $\prod_{k=0}^n r(B_k,a_k)$, where $r(B_k,a_k)$ is the inner radius radius of $B_k$ with respect to $a_k$. For $n\ge3$ this problem was recently solved by the author. In the present paper, it is solved for $n=2$.
@article{DVMG_2000_1_1_a0,
author = {L. V. Kovalev},
title = {On three disjoint domains},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {3--7},
publisher = {mathdoc},
volume = {1},
number = {1},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a0/}
}
L. V. Kovalev. On three disjoint domains. Dalʹnevostočnyj matematičeskij žurnal, Tome 1 (2000) no. 1, pp. 3-7. http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a0/