On three disjoint domains
Dalʹnevostočnyj matematičeskij žurnal, Tome 1 (2000) no. 1, pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the following problem, stated in [Zbl.830.30014] by V. N. Dubinin and earlier, in different form, by G. P. Bakhtina [Zbl.585.30027]. Let $a_0=0$, $|a_1|=\dots=|a_n|=1$, $a_k\in B_k\in\overline{\mathbb C}$, where $B_0,\dots,B_n$ are disjoint domains, and $B_1,\dots,B_n$ are symmetric about the unit circle. Find the exact upper bound for $\prod_{k=0}^n r(B_k,a_k)$, where $r(B_k,a_k)$ is the inner radius radius of $B_k$ with respect to $a_k$. For $n\ge3$ this problem was recently solved by the author. In the present paper, it is solved for $n=2$.
@article{DVMG_2000_1_1_a0,
     author = {L. V. Kovalev},
     title = {On three disjoint domains},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {3--7},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a0/}
}
TY  - JOUR
AU  - L. V. Kovalev
TI  - On three disjoint domains
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2000
SP  - 3
EP  - 7
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a0/
LA  - ru
ID  - DVMG_2000_1_1_a0
ER  - 
%0 Journal Article
%A L. V. Kovalev
%T On three disjoint domains
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2000
%P 3-7
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a0/
%G ru
%F DVMG_2000_1_1_a0
L. V. Kovalev. On three disjoint domains. Dalʹnevostočnyj matematičeskij žurnal, Tome 1 (2000) no. 1, pp. 3-7. http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a0/

[1] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii I, II”, Algebra i analiz, 9:3 (1997), 41–103 ; 5, 1–50 | MR | MR

[2] A. Yu. Solynin, “Moduli i ekstremalno-metricheskie problemy”, Algebra i analiz, 11:1 (1999), 3–86 | MR | Zbl

[3] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, UMN, 49:1 (1994), 3–76 | MR | Zbl

[4] G. P. Bakhtina, “O konformnykh radiusakh simmetrichnykh nenalegayuschikh oblastei”, Sovremennye voprosy veschestvennogo i kompleksnogo analiza, In-t matematiki AN USSR, Kiev, 1984, 21–27 | MR

[5] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-oe izd., In. lit., M., 1966 | MR | Zbl

[6] S. Stoilov, Teoriya funktsii kompleksnogo peremennogo, v. 2, In. lit., M., 1962

[7] L. V. Kovalev, “O vnutrennikh radiusakh simmetrichnykh nenalegayuschikh oblastei”, Izv. vuzov. Matematika, 2000, no. 6, 80–81 | MR | Zbl

[8] V. N. Dubinin, “Razdelyayuschee preobrazovanie oblastei i zadachi ob ekstremalnom razbienii”, Zap. nauchn. semin. LOMI, 168, 1988, 48–66 | Zbl

[9] V. N. Dubinin, “Metod simmetrizatsii v zadachakh o nenalegayuschikh oblastyakh”, Matem. sb., 128:1 (1985), 110–123 | MR | Zbl

[10] E. M. Galeev, V. M. Tikhomirov, Kratkii kurs teorii ekstremalnykh zadach, Izd-vo Mosk. un-ta, M., 1989 | Zbl

[11] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962 | MR