Special triple covers of algebraic surfaces
Documenta mathematica, Tome 27 (2022), pp. 2301-2332.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We study special triple covers $f:T\to S$ of algebraic surfaces, where the Tschirnhausen bundle $\mathcal{E}=\left(f_*\mathcal{O}_T/\mathcal{O}_S\right)^\vee$ is a quotient of a split rank three vector bundle, and we provide several necessary and sufficient criteria for the existence. As an application, we give a complete classification of special triple planes, finding among others two nice families of K3 surfaces.
Classification : 14J10, 14J29
Keywords: triple covers, K3 surfaces, surface of general type
@article{DOCMA_2022__27__a9,
     author = {Istrati, Nicolina and Pokora, Piotr and Rollenske, S\"onke},
     title = {Special triple covers of algebraic surfaces},
     journal = {Documenta mathematica},
     pages = {2301--2332},
     publisher = {mathdoc},
     volume = {27},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a9/}
}
TY  - JOUR
AU  - Istrati, Nicolina
AU  - Pokora, Piotr
AU  - Rollenske, Sönke
TI  - Special triple covers of algebraic surfaces
JO  - Documenta mathematica
PY  - 2022
SP  - 2301
EP  - 2332
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a9/
LA  - en
ID  - DOCMA_2022__27__a9
ER  - 
%0 Journal Article
%A Istrati, Nicolina
%A Pokora, Piotr
%A Rollenske, Sönke
%T Special triple covers of algebraic surfaces
%J Documenta mathematica
%D 2022
%P 2301-2332
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a9/
%G en
%F DOCMA_2022__27__a9
Istrati, Nicolina; Pokora, Piotr; Rollenske, Sönke. Special triple covers of algebraic surfaces. Documenta mathematica, Tome 27 (2022), pp. 2301-2332. http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a9/