On boundedness of semistable sheaves
Documenta mathematica, Tome 27 (2022), pp. 1-16.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We give a new simple proof of boundedness of the family of semistable sheaves with fixed numerical invariants on a fixed smooth projective variety. In characteristic zero our method gives a quick proof of Bogomolov's inequality for semistable sheaves on a smooth projective variety of any dimension $\ge 2$ without using any restriction theorems.
Classification : 14F06, 14D20, 14J60
Keywords: semistable sheaves, Bogomolov's inequality, bounded families
@article{DOCMA_2022__27__a66,
     author = {Langer, Adrian},
     title = {On boundedness of semistable sheaves},
     journal = {Documenta mathematica},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {27},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a66/}
}
TY  - JOUR
AU  - Langer, Adrian
TI  - On boundedness of semistable sheaves
JO  - Documenta mathematica
PY  - 2022
SP  - 1
EP  - 16
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a66/
LA  - en
ID  - DOCMA_2022__27__a66
ER  - 
%0 Journal Article
%A Langer, Adrian
%T On boundedness of semistable sheaves
%J Documenta mathematica
%D 2022
%P 1-16
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a66/
%G en
%F DOCMA_2022__27__a66
Langer, Adrian. On boundedness of semistable sheaves. Documenta mathematica, Tome 27 (2022), pp. 1-16. http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a66/