Arithmetic statistics and noncommutative Iwasawa theory
Documenta mathematica, Tome 27 (2022), pp. 89-149.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $p$ be an odd prime. Associated to a pair $(E, \mathcal{F}_\infty)$ consisting of a rational elliptic curve $E$ and a $p$-adic Lie extension $\mathcal{F}_\infty$ of $\mathbb{Q}$, is the $p$-primary Selmer group $\mathrm{Sel}_{p^{\infty}}(E/\mathcal{F}_\infty)$ of $E$ over $\mathcal{F}_\infty$. In this paper, we study the arithmetic statistics for the algebraic structure of this Selmer group. The results provide insights into the asymptotics for the growth of Mordell-Weil ranks of elliptic curves in noncommutative towers.
Classification : 11R23, 11G05
Keywords: arithmetic statistics, noncommutative Iwasawa theory, Selmer groups, Euler characteristics, Akashi series, growth of Mordell-Weil ranks
@article{DOCMA_2022__27__a64,
     author = {Kundu, Debanjana and Lei, Antonio and Ray, Anwesh},
     title = {Arithmetic statistics and noncommutative {Iwasawa} theory},
     journal = {Documenta mathematica},
     pages = {89--149},
     publisher = {mathdoc},
     volume = {27},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a64/}
}
TY  - JOUR
AU  - Kundu, Debanjana
AU  - Lei, Antonio
AU  - Ray, Anwesh
TI  - Arithmetic statistics and noncommutative Iwasawa theory
JO  - Documenta mathematica
PY  - 2022
SP  - 89
EP  - 149
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a64/
LA  - en
ID  - DOCMA_2022__27__a64
ER  - 
%0 Journal Article
%A Kundu, Debanjana
%A Lei, Antonio
%A Ray, Anwesh
%T Arithmetic statistics and noncommutative Iwasawa theory
%J Documenta mathematica
%D 2022
%P 89-149
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a64/
%G en
%F DOCMA_2022__27__a64
Kundu, Debanjana; Lei, Antonio; Ray, Anwesh. Arithmetic statistics and noncommutative Iwasawa theory. Documenta mathematica, Tome 27 (2022), pp. 89-149. http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a64/