Canonical $\beta$-extensions
Documenta mathematica, Tome 27 (2022), pp. 295-313.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We compare the level zero part of the type of a representation of $\mathrm{GL}(n)$ over a local non-archimedean field with the tame part of its Langlands parameter restricted to inertia. By normalizing this comparison, we construct canonical $\beta$-extensions of maximal simple characters.
Classification : 22E50, 11S37
Keywords: type theory, local Langlands correspondence, beta-extensions
@article{DOCMA_2022__27__a60,
     author = {Dotto, Andrea},
     title = {Canonical \(\beta\)-extensions},
     journal = {Documenta mathematica},
     pages = {295--313},
     publisher = {mathdoc},
     volume = {27},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a60/}
}
TY  - JOUR
AU  - Dotto, Andrea
TI  - Canonical \(\beta\)-extensions
JO  - Documenta mathematica
PY  - 2022
SP  - 295
EP  - 313
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a60/
LA  - en
ID  - DOCMA_2022__27__a60
ER  - 
%0 Journal Article
%A Dotto, Andrea
%T Canonical \(\beta\)-extensions
%J Documenta mathematica
%D 2022
%P 295-313
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a60/
%G en
%F DOCMA_2022__27__a60
Dotto, Andrea. Canonical \(\beta\)-extensions. Documenta mathematica, Tome 27 (2022), pp. 295-313. http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a60/