Crystalline lifts and a variant of the Steinberg-Winter theorem
Documenta mathematica, Tome 27 (2022), pp. 2441-2468.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $K/\mathbb{Q}_p$ be a finite extension. For all irreducible representations $\bar\rho:G_K\to G(\bar{\mathbb{F}}_p)$ valued in a general reductive group $G$, we construct crystalline lifts of $\bar{\rho}$ which are Hodge-Tate regular. We also discuss rationality questions. We prove a variant of the Steinberg-Winter theorem along the way.
Classification : 11S20, 14L10
Keywords: Galois representations, \(G\)-complete reducibility
@article{DOCMA_2022__27__a6,
     author = {Lin, Zhongyipan},
     title = {Crystalline lifts and a variant of the {Steinberg-Winter} theorem},
     journal = {Documenta mathematica},
     pages = {2441--2468},
     publisher = {mathdoc},
     volume = {27},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a6/}
}
TY  - JOUR
AU  - Lin, Zhongyipan
TI  - Crystalline lifts and a variant of the Steinberg-Winter theorem
JO  - Documenta mathematica
PY  - 2022
SP  - 2441
EP  - 2468
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a6/
LA  - en
ID  - DOCMA_2022__27__a6
ER  - 
%0 Journal Article
%A Lin, Zhongyipan
%T Crystalline lifts and a variant of the Steinberg-Winter theorem
%J Documenta mathematica
%D 2022
%P 2441-2468
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a6/
%G en
%F DOCMA_2022__27__a6
Lin, Zhongyipan. Crystalline lifts and a variant of the Steinberg-Winter theorem. Documenta mathematica, Tome 27 (2022), pp. 2441-2468. http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a6/