Rank inequalities for the Heegaard Floer homology of branched covers
Documenta mathematica, Tome 27 (2022), pp. 581-612.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We show that if $L$ is a nullhomologous link in a 3-manifold $Y$ and $\Sigma(Y, L)$ is a double cover of $Y$ branched along $L$ then for each spin$^c$-structure $\mathfrak{s}$ on $Y$ there is an inequality
$\dim\widehat{HF}(\Sigma(Y, L), \pi^\ast\mathfrak{s}; \mathbb{F}_2) \geq \dim \widehat{HF} (Y, \mathfrak{s}; \mathbb{F}_2).$
We discuss the relationship with the $L$-space conjecture and give some other topological applications, as well as an analogous result for sutured Floer homology.
Classification : 57M12, 57R58
Keywords: Heegaard Floer homology, double branched cover
@article{DOCMA_2022__27__a53,
     author = {Hendricks, Kristen and Lidman, Tye and Lipshitz, Robert},
     title = {Rank inequalities for the {Heegaard} {Floer} homology of branched covers},
     journal = {Documenta mathematica},
     pages = {581--612},
     publisher = {mathdoc},
     volume = {27},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a53/}
}
TY  - JOUR
AU  - Hendricks, Kristen
AU  - Lidman, Tye
AU  - Lipshitz, Robert
TI  - Rank inequalities for the Heegaard Floer homology of branched covers
JO  - Documenta mathematica
PY  - 2022
SP  - 581
EP  - 612
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a53/
LA  - en
ID  - DOCMA_2022__27__a53
ER  - 
%0 Journal Article
%A Hendricks, Kristen
%A Lidman, Tye
%A Lipshitz, Robert
%T Rank inequalities for the Heegaard Floer homology of branched covers
%J Documenta mathematica
%D 2022
%P 581-612
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a53/
%G en
%F DOCMA_2022__27__a53
Hendricks, Kristen; Lidman, Tye; Lipshitz, Robert. Rank inequalities for the Heegaard Floer homology of branched covers. Documenta mathematica, Tome 27 (2022), pp. 581-612. http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a53/