Voir la notice de l'article provenant de la source Electronic Library of Mathematics
$\dim\widehat{HF}(\Sigma(Y, L), \pi^\ast\mathfrak{s}; \mathbb{F}_2) \geq \dim \widehat{HF} (Y, \mathfrak{s}; \mathbb{F}_2).$ |
@article{DOCMA_2022__27__a53, author = {Hendricks, Kristen and Lidman, Tye and Lipshitz, Robert}, title = {Rank inequalities for the {Heegaard} {Floer} homology of branched covers}, journal = {Documenta mathematica}, pages = {581--612}, publisher = {mathdoc}, volume = {27}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a53/} }
TY - JOUR AU - Hendricks, Kristen AU - Lidman, Tye AU - Lipshitz, Robert TI - Rank inequalities for the Heegaard Floer homology of branched covers JO - Documenta mathematica PY - 2022 SP - 581 EP - 612 VL - 27 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a53/ LA - en ID - DOCMA_2022__27__a53 ER -
Hendricks, Kristen; Lidman, Tye; Lipshitz, Robert. Rank inequalities for the Heegaard Floer homology of branched covers. Documenta mathematica, Tome 27 (2022), pp. 581-612. http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a53/