An isovariant Elmendorf's theorem
Documenta mathematica, Tome 27 (2022), pp. 613-628.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

An isovariant map between spaces with a group action is an equivariant map which preserves isotropy groups. In this paper, we show that for a finite group $G$, the category of $G$-spaces with isovariant maps has a Quillen model structure. We prove a Piacenza-style model theoretic proof of an isovariant Elmendorf's theorem, showing that this model structure is Quillen equivalent to a model category of diagrams.
Classification : 55P91
Keywords: isovariant, model categories
@article{DOCMA_2022__27__a52,
     author = {Yeakel, Sarah},
     title = {An isovariant {Elmendorf's} theorem},
     journal = {Documenta mathematica},
     pages = {613--628},
     publisher = {mathdoc},
     volume = {27},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a52/}
}
TY  - JOUR
AU  - Yeakel, Sarah
TI  - An isovariant Elmendorf's theorem
JO  - Documenta mathematica
PY  - 2022
SP  - 613
EP  - 628
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a52/
LA  - en
ID  - DOCMA_2022__27__a52
ER  - 
%0 Journal Article
%A Yeakel, Sarah
%T An isovariant Elmendorf's theorem
%J Documenta mathematica
%D 2022
%P 613-628
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a52/
%G en
%F DOCMA_2022__27__a52
Yeakel, Sarah. An isovariant Elmendorf's theorem. Documenta mathematica, Tome 27 (2022), pp. 613-628. http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a52/