Spectral theory of regular sequences
Documenta mathematica, Tome 27 (2022), pp. 629-653.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Regular sequences are natural generalisations of fixed points of constant-length substitutions on finite alphabets, that is, of automatic sequences. Using the harmonic analysis of measures associated with substitutions as motivation, we study the limiting asymptotics of regular sequences by constructing a systematic measure-theoretic framework surrounding them. The constructed measures are generalisations of mass distributions supported on attractors of iterated function systems.
Classification : 11B85, 42A38, 28A80
Keywords: regular sequences, aperiodic order, symbolic dynamics, continuous measures, dilation equations
@article{DOCMA_2022__27__a51,
     author = {Coons, Michael and Evans, James and Ma\~nibo, Neil},
     title = {Spectral theory of regular sequences},
     journal = {Documenta mathematica},
     pages = {629--653},
     publisher = {mathdoc},
     volume = {27},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a51/}
}
TY  - JOUR
AU  - Coons, Michael
AU  - Evans, James
AU  - Mañibo, Neil
TI  - Spectral theory of regular sequences
JO  - Documenta mathematica
PY  - 2022
SP  - 629
EP  - 653
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a51/
LA  - en
ID  - DOCMA_2022__27__a51
ER  - 
%0 Journal Article
%A Coons, Michael
%A Evans, James
%A Mañibo, Neil
%T Spectral theory of regular sequences
%J Documenta mathematica
%D 2022
%P 629-653
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a51/
%G en
%F DOCMA_2022__27__a51
Coons, Michael; Evans, James; Mañibo, Neil. Spectral theory of regular sequences. Documenta mathematica, Tome 27 (2022), pp. 629-653. http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a51/