Polynomial approximation of quantum Lipschitz functions
Documenta mathematica, Tome 27 (2022), pp. 765-787.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We prove an approximation result for Lipschitz functions on the quantum sphere $S_q^2$, from which we deduce that the two natural quantum metric structures on $S_q^2$ have quantum Gromov-Hausdorff distance zero.
Classification : 81, 41A10, 46L30, 46L89, 81R15, 81R60, 58B32
Keywords: quantum metric spaces, fuzzy spheres, Podleś sphere, Berezin transform, spectral triples, quantum Gromov-Hausdorff distance
@article{DOCMA_2022__27__a47,
     author = {Aguilar, Konrad and Kaad, Jens and Kyed, David},
     title = {Polynomial approximation of quantum {Lipschitz} functions},
     journal = {Documenta mathematica},
     pages = {765--787},
     publisher = {mathdoc},
     volume = {27},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a47/}
}
TY  - JOUR
AU  - Aguilar, Konrad
AU  - Kaad, Jens
AU  - Kyed, David
TI  - Polynomial approximation of quantum Lipschitz functions
JO  - Documenta mathematica
PY  - 2022
SP  - 765
EP  - 787
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a47/
LA  - en
ID  - DOCMA_2022__27__a47
ER  - 
%0 Journal Article
%A Aguilar, Konrad
%A Kaad, Jens
%A Kyed, David
%T Polynomial approximation of quantum Lipschitz functions
%J Documenta mathematica
%D 2022
%P 765-787
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a47/
%G en
%F DOCMA_2022__27__a47
Aguilar, Konrad; Kaad, Jens; Kyed, David. Polynomial approximation of quantum Lipschitz functions. Documenta mathematica, Tome 27 (2022), pp. 765-787. http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a47/