Fiberwise Kähler-Ricci flows on families of bounded strongly pseudoconvex domains
Documenta mathematica, Tome 27 (2022), pp. 847-868.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $\pi:\mathbb{C}^n\times\mathbb{C}\rightarrow \mathbb{C}$ be the projection map onto the second factor and let $D$ be a domain in $\mathbb{C}^{n+1}$ such that for $y\in\pi(D)$, every fiber $D_y:=D\cap\pi^{-1}(y)$ is a smoothly bounded strongly pseudoconvex domain in $\mathbb{C}^n$ and is diffeomorphic to each other. By Chau's theorem, the Kähler-Ricci flow has a long time solution $\omega_y(t)$ on each fiber $X_y$. This family of flows induces a smooth real (1,1)-form $\omega(t)$ on the total space $D$ whose restriction to the fiber $D_y$ satisfies $\omega(t)\vert_{D_y}=\omega_y(t)$. In this paper, we prove that $\omega(t)$ is positive for all $t>0$ in $D$ if $\omega(0)$ is positive. As a corollary, we also prove that the fiberwise Kähler-Einstein metric is positive semi-definite on $D$ if $D$ is pseudoconvex in $\mathbb{C}^{n+1}$.
Classification : 53C55, 53E30, 32G05, 32T15
Keywords: Kähler-Ricci flow, positivity, Kähler-Einstein metric, fiberwise Kähler-Ricci flow, family of strongly pseudoconvex domains
@article{DOCMA_2022__27__a45,
     author = {Choi, Young-Jun and Yoo, Sungmin},
     title = {Fiberwise {K\"ahler-Ricci} flows on families of bounded strongly pseudoconvex domains},
     journal = {Documenta mathematica},
     pages = {847--868},
     publisher = {mathdoc},
     volume = {27},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a45/}
}
TY  - JOUR
AU  - Choi, Young-Jun
AU  - Yoo, Sungmin
TI  - Fiberwise Kähler-Ricci flows on families of bounded strongly pseudoconvex domains
JO  - Documenta mathematica
PY  - 2022
SP  - 847
EP  - 868
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a45/
LA  - en
ID  - DOCMA_2022__27__a45
ER  - 
%0 Journal Article
%A Choi, Young-Jun
%A Yoo, Sungmin
%T Fiberwise Kähler-Ricci flows on families of bounded strongly pseudoconvex domains
%J Documenta mathematica
%D 2022
%P 847-868
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a45/
%G en
%F DOCMA_2022__27__a45
Choi, Young-Jun; Yoo, Sungmin. Fiberwise Kähler-Ricci flows on families of bounded strongly pseudoconvex domains. Documenta mathematica, Tome 27 (2022), pp. 847-868. http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a45/