Flat cotorsion modules over Noether algebras
Documenta mathematica, Tome 27 (2022), pp. 1101-1167.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

For a module-finite algebra over a commutative noetherian ring, we give a complete description of flat cotorsion modules in terms of prime ideals of the algebra, as a generalization of Enochs' result for a commutative noetherian ring. As a consequence, we show that pointwise Matlis duality gives a bijective correspondence between the isoclasses of indecomposable injective left modules and the isoclasses of indecomposable flat cotorsion right modules. This correspondence is an explicit realization of Herzog's homeomorphism induced from elementary duality of Ziegler spectra.
Classification : 16G30, 16D70, 16D40, 13B35
Keywords: flat cotorsion module, Noether algebra, pure-injective module, Ziegler spectrum, elementary duality, ideal-adic completion
@article{DOCMA_2022__27__a38,
     author = {Kanda, Ryo and Nakamura, Tsutomu},
     title = {Flat cotorsion modules over {Noether} algebras},
     journal = {Documenta mathematica},
     pages = {1101--1167},
     publisher = {mathdoc},
     volume = {27},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a38/}
}
TY  - JOUR
AU  - Kanda, Ryo
AU  - Nakamura, Tsutomu
TI  - Flat cotorsion modules over Noether algebras
JO  - Documenta mathematica
PY  - 2022
SP  - 1101
EP  - 1167
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a38/
LA  - en
ID  - DOCMA_2022__27__a38
ER  - 
%0 Journal Article
%A Kanda, Ryo
%A Nakamura, Tsutomu
%T Flat cotorsion modules over Noether algebras
%J Documenta mathematica
%D 2022
%P 1101-1167
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a38/
%G en
%F DOCMA_2022__27__a38
Kanda, Ryo; Nakamura, Tsutomu. Flat cotorsion modules over Noether algebras. Documenta mathematica, Tome 27 (2022), pp. 1101-1167. http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a38/