Reduction of structure to parabolic subgroups
Documenta mathematica, Tome 27 (2022), pp. 1421-1446.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $G$ be an affine group over a field of characteristic not two. A $G$-torsor is called \textit{isotropic} if it admits reduction of structure to a proper parabolic subgroup of $G$. This definition generalizes isotropy of affine groups and involutions of central simple algebras. When does $G$ admit anisotropic torsors? Building on work of J. Tits, we answer this question for simple groups. We also give an answer for connected and semisimple $G$ under certain restrictions on its root system.
Classification : 11E72, 20G15, 20G07, 11E39, 16W10
Keywords: linear algebraic groups, parabolic subgroups, isotropy, anisotropy, torsors, Galois cohomology
@article{DOCMA_2022__27__a30,
     author = {Ofek, Danny},
     title = {Reduction of structure to parabolic subgroups},
     journal = {Documenta mathematica},
     pages = {1421--1446},
     publisher = {mathdoc},
     volume = {27},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a30/}
}
TY  - JOUR
AU  - Ofek, Danny
TI  - Reduction of structure to parabolic subgroups
JO  - Documenta mathematica
PY  - 2022
SP  - 1421
EP  - 1446
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a30/
LA  - en
ID  - DOCMA_2022__27__a30
ER  - 
%0 Journal Article
%A Ofek, Danny
%T Reduction of structure to parabolic subgroups
%J Documenta mathematica
%D 2022
%P 1421-1446
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a30/
%G en
%F DOCMA_2022__27__a30
Ofek, Danny. Reduction of structure to parabolic subgroups. Documenta mathematica, Tome 27 (2022), pp. 1421-1446. http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a30/