Supports for constructible systems
Documenta mathematica, Tome 27 (2022), pp. 1739-1772.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We develop a ``universal'' support theory for derived categories of constructible (analytic or étale) sheaves, holonomic $\mathcal{D}$-modules, mixed Hodge modules and others. As applications we classify such objects up to the tensor triangulated structure and discuss the question of monoidal topological reconstruction of algebraic varieties.
Classification : 14F20, 14F08, 14F25, 14F42, 18G80, 18M05
Keywords: constructible sheaves, holonomic \(\mathcal{D}\)-modules, mixed Hodge modules, motivic sheaves, constructible systems, support datum, tensor-triangular geometry, smashing spectrum, classification, reconstruction
@article{DOCMA_2022__27__a22,
     author = {Gallauer, Martin},
     title = {Supports for constructible systems},
     journal = {Documenta mathematica},
     pages = {1739--1772},
     publisher = {mathdoc},
     volume = {27},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a22/}
}
TY  - JOUR
AU  - Gallauer, Martin
TI  - Supports for constructible systems
JO  - Documenta mathematica
PY  - 2022
SP  - 1739
EP  - 1772
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a22/
LA  - en
ID  - DOCMA_2022__27__a22
ER  - 
%0 Journal Article
%A Gallauer, Martin
%T Supports for constructible systems
%J Documenta mathematica
%D 2022
%P 1739-1772
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a22/
%G en
%F DOCMA_2022__27__a22
Gallauer, Martin. Supports for constructible systems. Documenta mathematica, Tome 27 (2022), pp. 1739-1772. http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a22/