Hodge-Newton filtration for $p$-divisible groups with ramified endomorphism structure
Documenta mathematica, Tome 27 (2022), pp. 1805-1863.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $\mathcal{O}_K$ be a complete discrete valuation ring of mixed characteristic $(0, p)$ with perfect residue field. We prove the existence of the Hodge-Newton filtration for $p$-divisible groups over $\mathcal{O}_K$ with additional endomorphism structure for the ring of integers of a finite, possibly ramified field extension of $\mathbb{Q}_p$. The argument is based on the Harder-Narasimhan theory for finite flat group schemes over $\mathcal{O}_K$. In particular, we describe a sufficient condition for the existence of a filtration of $p$-divisible groups over $\mathcal{O}_K$ associated to a break point of the Harder-Narasimhan polygon.
Classification : 14L05
Keywords: \(p\)-divisible groups, Hodge-Newton filtration, Harder-Narasimhan theory, ramified PEL structure
@article{DOCMA_2022__27__a20,
     author = {Marrama, Andrea},
     title = {Hodge-Newton filtration for \(p\)-divisible groups with ramified endomorphism structure},
     journal = {Documenta mathematica},
     pages = {1805--1863},
     publisher = {mathdoc},
     volume = {27},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a20/}
}
TY  - JOUR
AU  - Marrama, Andrea
TI  - Hodge-Newton filtration for \(p\)-divisible groups with ramified endomorphism structure
JO  - Documenta mathematica
PY  - 2022
SP  - 1805
EP  - 1863
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a20/
LA  - en
ID  - DOCMA_2022__27__a20
ER  - 
%0 Journal Article
%A Marrama, Andrea
%T Hodge-Newton filtration for \(p\)-divisible groups with ramified endomorphism structure
%J Documenta mathematica
%D 2022
%P 1805-1863
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a20/
%G en
%F DOCMA_2022__27__a20
Marrama, Andrea. Hodge-Newton filtration for \(p\)-divisible groups with ramified endomorphism structure. Documenta mathematica, Tome 27 (2022), pp. 1805-1863. http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a20/