$p$-Selmer group and modular symbols
Documenta mathematica, Tome 27 (2022), pp. 1891-1922.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We prove that the dimension of the $p$-Selmer group of an elliptic curve is controlled by certain analytic quantities associated with modular symbols as conjectured by Kurihara.
Classification : 11R23, 11R34, 11G05, 11G40
Keywords: \(p\)-Selmer group, modular symbols, elliptic curves, Euler systems, Kolyvagin systems, Mazur-Tate conjecture
@article{DOCMA_2022__27__a18,
     author = {Sakamoto, Ryotaro},
     title = {\(p\)-Selmer group and modular symbols},
     journal = {Documenta mathematica},
     pages = {1891--1922},
     publisher = {mathdoc},
     volume = {27},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a18/}
}
TY  - JOUR
AU  - Sakamoto, Ryotaro
TI  - \(p\)-Selmer group and modular symbols
JO  - Documenta mathematica
PY  - 2022
SP  - 1891
EP  - 1922
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a18/
LA  - en
ID  - DOCMA_2022__27__a18
ER  - 
%0 Journal Article
%A Sakamoto, Ryotaro
%T \(p\)-Selmer group and modular symbols
%J Documenta mathematica
%D 2022
%P 1891-1922
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a18/
%G en
%F DOCMA_2022__27__a18
Sakamoto, Ryotaro. \(p\)-Selmer group and modular symbols. Documenta mathematica, Tome 27 (2022), pp. 1891-1922. http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a18/