Free noncommutative hereditary kernels: Jordan decomposition, Arveson extension, kernel domination
Documenta mathematica, Tome 27 (2022), pp. 1985-2040.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We discuss (i) a quantized version of the Jordan decomposition theorem for a complex Borel measure on a compact Hausdorff space, namely, the more general problem of decomposing a general noncommutative kernel (a quantization of the standard notion of kernel function) as a linear combination of completely positive noncommutative kernels (a quantization of the standard notion of positive definite kernel). Other special cases of (i) include: the problem of decomposing a general operator-valued kernel function as a linear combination of positive kernels (not always possible), of decomposing a general bounded linear Hilbert-space operator as a linear combination of positive linear operators (always possible), of decomposing a completely bounded linear map from a $C^*$-algebra $\mathcal{A}$ to an injective $C^*$-algebra $\mathcal{L}(\mathcal{Y})$ as a linear combination of completely positive maps from $\mathcal{A}$ to $\mathcal{L}(\mathcal{Y})$ (always possible). We also discuss (ii) a noncommutative kernel generalization of the Arveson extension theorem (any completely positive map $\phi$ from an operator system $\mathbb{S}$ to an injective $C^*$-algebra $\mathcal{L}(\mathcal{Y})$ can be extended to a completely positive map $\phi_e$ from a $C^*$-algebra containing $\mathbb{S}$ to $\mathcal{L}(\mathcal{Y}))$, and (iii) a noncommutative kernel version of a Positivstellensatz (i.e., finding a certificate to explain why one kernel is positive at points where another given kernel is strictly positive).
Classification : 47B32, 47A60
Keywords: quantized functional analysis, noncommutative function, completely positive noncommutative kernel, completely positive map, bimodule maps
@article{DOCMA_2022__27__a15,
     author = {Ball, Joseph A. and Marx, Gregory and Vinnikov, Victor},
     title = {Free noncommutative hereditary kernels: {Jordan} decomposition, {Arveson} extension, kernel domination},
     journal = {Documenta mathematica},
     pages = {1985--2040},
     publisher = {mathdoc},
     volume = {27},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a15/}
}
TY  - JOUR
AU  - Ball, Joseph A.
AU  - Marx, Gregory
AU  - Vinnikov, Victor
TI  - Free noncommutative hereditary kernels: Jordan decomposition, Arveson extension, kernel domination
JO  - Documenta mathematica
PY  - 2022
SP  - 1985
EP  - 2040
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a15/
LA  - en
ID  - DOCMA_2022__27__a15
ER  - 
%0 Journal Article
%A Ball, Joseph A.
%A Marx, Gregory
%A Vinnikov, Victor
%T Free noncommutative hereditary kernels: Jordan decomposition, Arveson extension, kernel domination
%J Documenta mathematica
%D 2022
%P 1985-2040
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a15/
%G en
%F DOCMA_2022__27__a15
Ball, Joseph A.; Marx, Gregory; Vinnikov, Victor. Free noncommutative hereditary kernels: Jordan decomposition, Arveson extension, kernel domination. Documenta mathematica, Tome 27 (2022), pp. 1985-2040. http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a15/