The homotopy type of the topological cobordism category
Documenta mathematica, Tome 27 (2022), pp. 2107-2182.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We define a cobordism category of topological manifolds and prove that if $d\neq 4$ its classifying space is weakly equivalent to $\Omega^{\infty -1}MT\mathrm{Top}(d)$, where $MT\mathrm{Top}(d)$ is the Thom spectrum of the inverse of the canonical bundle over $B\mathrm{Top}(d)$. We also give versions for manifolds with tangential structures and/or boundary. The proof uses smoothing theory and excision in the tangential structure to reduce the statement to the computation of the homotopy type of smooth cobordism categories due to Galatius-Madsen-Tillman-Weiss.
Classification : 57N70, 58D05, 55R40
Keywords: cobordism categories, topological manifolds
@article{DOCMA_2022__27__a12,
     author = {Gomez Lopez, Mauricio and Kupers, Alexander},
     title = {The homotopy type of the topological cobordism category},
     journal = {Documenta mathematica},
     pages = {2107--2182},
     publisher = {mathdoc},
     volume = {27},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a12/}
}
TY  - JOUR
AU  - Gomez Lopez, Mauricio
AU  - Kupers, Alexander
TI  - The homotopy type of the topological cobordism category
JO  - Documenta mathematica
PY  - 2022
SP  - 2107
EP  - 2182
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a12/
LA  - en
ID  - DOCMA_2022__27__a12
ER  - 
%0 Journal Article
%A Gomez Lopez, Mauricio
%A Kupers, Alexander
%T The homotopy type of the topological cobordism category
%J Documenta mathematica
%D 2022
%P 2107-2182
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a12/
%G en
%F DOCMA_2022__27__a12
Gomez Lopez, Mauricio; Kupers, Alexander. The homotopy type of the topological cobordism category. Documenta mathematica, Tome 27 (2022), pp. 2107-2182. http://geodesic.mathdoc.fr/item/DOCMA_2022__27__a12/