$k$-differentials on curves and rigid cycles in moduli space
Documenta mathematica, Tome 26 (2021), pp. 1817-1850.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

For $g\geq 2, j=1,\dots,g$ and $n\geq g+j$ we exhibit infinitely many new rigid and extremal effective codimension $j$ cycles in $\overline{\mathcal{M}}_{g,n} $, the Deligne-Mumford compactification of the moduli of $n$-pointed curves of genus $g$. The extremal cycles constructed correspond to the strata of quadratic differentials and projections of these strata under forgetful morphisms. We further show the same holds for $k$-differentials with $k\geq 3$ if the strata are irreducible. We compute the class of the divisors in the case of quadratic differentials which contain the first known examples of effective divisors on $\overline{\mathcal{M}}_{g,n}$ with negative $\psi_i$ coefficients.
Classification : 14C20, 14C25, 14E30
Keywords: moduli of curves, divisors, rigid cycles, Teichmüller dynamics
@article{DOCMA_2021__26__a7,
     author = {Mullane, Scott},
     title = {\(k\)-differentials on curves and rigid cycles in moduli space},
     journal = {Documenta mathematica},
     pages = {1817--1850},
     publisher = {mathdoc},
     volume = {26},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a7/}
}
TY  - JOUR
AU  - Mullane, Scott
TI  - \(k\)-differentials on curves and rigid cycles in moduli space
JO  - Documenta mathematica
PY  - 2021
SP  - 1817
EP  - 1850
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a7/
LA  - en
ID  - DOCMA_2021__26__a7
ER  - 
%0 Journal Article
%A Mullane, Scott
%T \(k\)-differentials on curves and rigid cycles in moduli space
%J Documenta mathematica
%D 2021
%P 1817-1850
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a7/
%G en
%F DOCMA_2021__26__a7
Mullane, Scott. \(k\)-differentials on curves and rigid cycles in moduli space. Documenta mathematica, Tome 26 (2021), pp. 1817-1850. http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a7/