$n$-quasi-abelian categories vs $n$-tilting torsion pairs
Documenta mathematica, Tome 26 (2021), pp. 149-197.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

It is a well established fact that the notions of quasi-abelian categories and tilting torsion pairs are equivalent. This equivalence fits in a wider picture including tilting pairs of $t$-structures. Firstly, we extend this picture into a hierarchy of $n$-quasi-abelian categories and $n$-tilting torsion classes. We prove that any $n$-quasi-abelian category $\mathcal{E}$ admits a ``derived'' category $D(\mathcal{E})$ endowed with a $n$-tilting pair of $t$-structures such that the respective hearts are derived equivalent. Secondly, we describe the hearts of these $t$-structures as quotient categories of coherent functors, generalizing Auslander's Formula. Thirdly, we apply our results to Bridgeland's theory of perverse coherent sheaves for flop contractions. In Bridgeland's work, the relative dimension $1$ assumption guaranteed that $f_\ast$-acyclic coherent sheaves form a $1$-tilting torsion class, whose associated heart is derived equivalent to $D(Y)$. We generalize this theorem to relative dimension $2$.
Classification : 18E05, 18E20, 18E40, 14F08, 16S90
Keywords: quasi-abelian category, \(t\)-structures, torsion pair, tilting objects, Bondal-Orlov conjecture, perverse coherent sheaves
@article{DOCMA_2021__26__a52,
     author = {Fiorot, Luisa},
     title = {\(n\)-quasi-abelian categories vs \(n\)-tilting torsion pairs},
     journal = {Documenta mathematica},
     pages = {149--197},
     publisher = {mathdoc},
     volume = {26},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a52/}
}
TY  - JOUR
AU  - Fiorot, Luisa
TI  - \(n\)-quasi-abelian categories vs \(n\)-tilting torsion pairs
JO  - Documenta mathematica
PY  - 2021
SP  - 149
EP  - 197
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a52/
LA  - en
ID  - DOCMA_2021__26__a52
ER  - 
%0 Journal Article
%A Fiorot, Luisa
%T \(n\)-quasi-abelian categories vs \(n\)-tilting torsion pairs
%J Documenta mathematica
%D 2021
%P 149-197
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a52/
%G en
%F DOCMA_2021__26__a52
Fiorot, Luisa. \(n\)-quasi-abelian categories vs \(n\)-tilting torsion pairs. Documenta mathematica, Tome 26 (2021), pp. 149-197. http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a52/